Local statistics
Introduction
This handout accompanies Chapter 8 in O’Sullivan and Unwin (2010).
LISA
We compute some measures of local spatial autocorrelation.
First get the Auckland data.
if (!require("rspat")) remotes::install_github("rspatial/rspat")
library(rspat)
auck <- spat_data("auctb")
Now compute the spatial weights. You can try other ways
(e.g. relation="touches"
)
w <- relate(auck, relation="rook")
Compute the Getis Gi
Gi <- autocor(auck$TB, w, "Gi")
head(Gi)
## [1] 0.4241759 0.5623307 0.4047413 0.6819762 -1.3278352 -1.4086435
And make a map
grays <- rev(gray(seq(0,1,.2)))
auck$Gi <- Gi
plot(auck, "Gi", col=grays)
Now on to the Gi*
by including the focal area in the computation.
#include "self"
diag(w) <- TRUE
auck$Gistar <- autocor(auck$TB, w, "Gi*")
plot(auck, "Gistar", main="Gi*", col=grays)
This looks very similar to the local average, which we compute below.
auck$loc_mean <- apply(w, 1, function(i) mean(auck$TB[i]))
plot(auck, "loc_mean", main="Local mean", col=grays)
The local Moran Ii has not been implemented in terra
, but we can
use spdep
(a package that if focussed on these type of statistics
and on spatial regression).
library(spdep)
sfauck <- sf::st_as_sf(auck)
wr <- poly2nb(sfauck, row.names=sfauck$Id, queen=FALSE)
lstw <- nb2listw(wr, style="B")
auck$Ii <- localmoran(auck$TB, lstw)
## Warning: [[[<-,SpatVector] only using the first column
plot(auck, "Ii", main="Local Moran", col=grays)
In the above I followed the book by useing the raw count data. Howwever, it would be more approproate to use disease density instead. You can compute that like this:
auck$TBdens <- 10000 * auck$TB / expanse(auck)
The 10000 is just to avoid very small numbers.
Geographically weighted regression
Here is an example of GWR with California precipitation data.
cts <- spat_data("counties")
p <- spat_data("precipitation")
head(p)
## ID NAME LAT LONG ALT JAN FEB MAR APR MAY JUN JUL
## 1 ID741 DEATH VALLEY 36.47 -116.87 -59 7.4 9.5 7.5 3.4 1.7 1.0 3.7
## 2 ID743 THERMAL/FAA AIRPORT 33.63 -116.17 -34 9.2 6.9 7.9 1.8 1.6 0.4 1.9
## 3 ID744 BRAWLEY 2SW 32.96 -115.55 -31 11.3 8.3 7.6 2.0 0.8 0.1 1.9
## 4 ID753 IMPERIAL/FAA AIRPORT 32.83 -115.57 -18 10.6 7.0 6.1 2.5 0.2 0.0 2.4
## 5 ID754 NILAND 33.28 -115.51 -18 9.0 8.0 9.0 3.0 0.0 1.0 8.0
## 6 ID758 EL CENTRO/NAF 32.82 -115.67 -13 9.8 1.6 3.7 3.0 0.4 0.0 3.0
## AUG SEP OCT NOV DEC
## 1 2.8 4.3 2.2 4.7 3.9
## 2 3.4 5.3 2.0 6.3 5.5
## 3 9.2 6.5 5.0 4.8 9.7
## 4 2.6 8.3 5.4 7.7 7.3
## 5 9.0 7.0 8.0 7.0 9.0
## 6 10.8 0.2 0.0 3.3 1.4
plot(cts)
points(p[,c("LONG", "LAT")], col="red", pch=20)
Compute annual average precipitation
p$pan <- rowSums(p[,6:17])
Global regression model
m <- lm(pan ~ ALT, data=p)
m
##
## Call:
## lm(formula = pan ~ ALT, data = p)
##
## Coefficients:
## (Intercept) ALT
## 523.60 0.17
Create sf
objects with a planar crs.
alb <- "+proj=aea +lat_1=34 +lat_2=40.5 +lat_0=0 +lon_0=-120 +x_0=0 +y_0=-4000000 +datum=WGS84"
sp <- vect(p, c("LONG", "LAT"), crs="+proj=longlat +datum=NAD83")
sp <- terra::project(sp, alb)
spsf <- sf::st_as_sf(sp)
vctst <- terra::project(cts, alb)
ctst <- sf::st_as_sf(vctst)
Get the optimal bandwidth
library( spgwr )
## Loading required package: sp
## NOTE: This package does not constitute approval of GWR
## as a method of spatial analysis; see example(gwr)
bw <- gwr.sel(pan ~ ALT, crds(sp), data=spsf)
## Bandwidth: 526221.2 CV score: 64886875
## Bandwidth: 850593.7 CV score: 74209068
## Bandwidth: 325748 CV score: 54001109
## Bandwidth: 201848.7 CV score: 44611208
## Bandwidth: 125274.7 CV score: 35746319
## Bandwidth: 77949.4 CV score: 29181740
## Bandwidth: 48700.75 CV score: 22737214
## Bandwidth: 30624.09 CV score: 17457187
## Bandwidth: 19452.1 CV score: 15163447
## Bandwidth: 12547.43 CV score: 19452244
## Bandwidth: 22792.76 CV score: 15513011
## Bandwidth: 17052.47 CV score: 15710047
## Bandwidth: 20218.98 CV score: 15167452
## Bandwidth: 19767.94 CV score: 15156926
## Bandwidth: 19790.02 CV score: 15156919
## Bandwidth: 19781.35 CV score: 15156915
## Bandwidth: 19781.45 CV score: 15156915
## Bandwidth: 19781.44 CV score: 15156915
## Bandwidth: 19781.44 CV score: 15156915
## Bandwidth: 19781.44 CV score: 15156915
## Bandwidth: 19781.44 CV score: 15156915
bw
## [1] 19781.44
Create a regular set of points to estimate parameters for.
r <- rast(vctst, res=10000)
r <- rasterize(vect(ctst), r)
newpts <- geom(as.points(r))[, c("x", "y")]
Run the gwr
function
g <- gwr(pan ~ ALT, crds(sp), data=spsf, bandwidth=bw, fit.points=newpts[, 1:2])
g
## Call:
## gwr(formula = pan ~ ALT, data = spsf, coords = crds(sp), bandwidth = bw,
## fit.points = newpts[, 1:2])
## Kernel function: gwr.Gauss
## Fixed bandwidth: 19781.44
## Fit points: 4090
## Summary of GWR coefficient estimates at fit points:
## Min. 1st Qu. Median 3rd Qu. Max.
## X.Intercept. -846.296586 77.986455 328.578859 729.603430 3452.2039
## ALT -3.961769 0.034145 0.201568 0.418717 4.6023
Link the results back to the raster.
slope <- intercept <- r
slope[!is.na(slope)] <- g$SDF$ALT
intercept[!is.na(intercept)] <- g$SDF$"(Intercept)"
s <- c(intercept, slope)
names(s) <- c("intercept", "slope")
plot(s)
See this page for a more detailed example of geographically weighted regression.