Local statistics

Introduction

This handout accompanies Chapter 8 in O’Sullivan and Unwin (2010).

LISA

We compute some measures of local spatial autocorrelation.

First get the Auckland data.

if (!require("rspat")) remotes::install_github("rspatial/rspat")
library(rspat)
auck <- spat_data("auctb")

Now compute the spatial weights. You can try other ways (e.g. relation="touches")

w <- relate(auck, relation="rook")

Compute the Getis Gi

Gi <- autocor(auck$TB, w, "Gi")
head(Gi)
## [1]  0.4241759  0.5623307  0.4047413  0.6819762 -1.3278352 -1.4086435

And make a map

grays <- rev(gray(seq(0,1,.2)))
auck$Gi <- Gi
plot(auck, "Gi", col=grays)

image0

Now on to the Gi* by including the focal area in the computation.

#include "self"
diag(w) <- TRUE
auck$Gistar <- autocor(auck$TB, w, "Gi*")
plot(auck, "Gistar", main="Gi*", col=grays)

image1

This looks very similar to the local average, which we compute below.

auck$loc_mean <- apply(w, 1, function(i) mean(auck$TB[i]))
plot(auck, "loc_mean", main="Local mean", col=grays)

image2

The local Moran Ii has not been implemented in terra, but we can use spdep (a package that if focussed on these type of statistics and on spatial regression).

library(spdep)
sfauck <- sf::st_as_sf(auck)
wr <- poly2nb(sfauck, row.names=sfauck$Id, queen=FALSE)
lstw <- nb2listw(wr, style="B")
auck$Ii <- localmoran(auck$TB, lstw)
## Warning: [[[<-,SpatVector] only using the first column
plot(auck, "Ii", main="Local Moran", col=grays)

image3

In the above I followed the book by useing the raw count data. Howwever, it would be more approproate to use disease density instead. You can compute that like this:

auck$TBdens <- 10000 * auck$TB / expanse(auck)

The 10000 is just to avoid very small numbers.

Geographically weighted regression

Here is an example of GWR with California precipitation data.

cts <- spat_data("counties")
p <- spat_data("precipitation")
head(p)
##      ID                 NAME   LAT    LONG ALT  JAN FEB MAR APR MAY JUN JUL
## 1 ID741         DEATH VALLEY 36.47 -116.87 -59  7.4 9.5 7.5 3.4 1.7 1.0 3.7
## 2 ID743  THERMAL/FAA AIRPORT 33.63 -116.17 -34  9.2 6.9 7.9 1.8 1.6 0.4 1.9
## 3 ID744          BRAWLEY 2SW 32.96 -115.55 -31 11.3 8.3 7.6 2.0 0.8 0.1 1.9
## 4 ID753 IMPERIAL/FAA AIRPORT 32.83 -115.57 -18 10.6 7.0 6.1 2.5 0.2 0.0 2.4
## 5 ID754               NILAND 33.28 -115.51 -18  9.0 8.0 9.0 3.0 0.0 1.0 8.0
## 6 ID758        EL CENTRO/NAF 32.82 -115.67 -13  9.8 1.6 3.7 3.0 0.4 0.0 3.0
##    AUG SEP OCT NOV DEC
## 1  2.8 4.3 2.2 4.7 3.9
## 2  3.4 5.3 2.0 6.3 5.5
## 3  9.2 6.5 5.0 4.8 9.7
## 4  2.6 8.3 5.4 7.7 7.3
## 5  9.0 7.0 8.0 7.0 9.0
## 6 10.8 0.2 0.0 3.3 1.4
plot(cts)
points(p[,c("LONG", "LAT")], col="red", pch=20)

image4

Compute annual average precipitation

p$pan <- rowSums(p[,6:17])

Global regression model

m <- lm(pan ~ ALT, data=p)
m
##
## Call:
## lm(formula = pan ~ ALT, data = p)
##
## Coefficients:
## (Intercept)          ALT
##      523.60         0.17

Create sf objects with a planar crs.

alb <- "+proj=aea +lat_1=34 +lat_2=40.5 +lat_0=0 +lon_0=-120 +x_0=0 +y_0=-4000000 +datum=WGS84"
sp <- vect(p, c("LONG", "LAT"), crs="+proj=longlat +datum=NAD83")
sp <- terra::project(sp, alb)
spsf <- sf::st_as_sf(sp)
vctst <- terra::project(cts, alb)
ctst <- sf::st_as_sf(vctst)

Get the optimal bandwidth

library( spgwr )
## Loading required package: sp
## NOTE: This package does not constitute approval of GWR
## as a method of spatial analysis; see example(gwr)
bw <- gwr.sel(pan ~ ALT, crds(sp), data=spsf)
## Bandwidth: 526221.2 CV score: 64886877
## Bandwidth: 850593.7 CV score: 74209069
## Bandwidth: 325747.9 CV score: 54001111
## Bandwidth: 201848.7 CV score: 44611207
## Bandwidth: 125274.7 CV score: 35746317
## Bandwidth: 77949.4 CV score: 29181734
## Bandwidth: 48700.75 CV score: 22737206
## Bandwidth: 30624.09 CV score: 17457182
## Bandwidth: 19452.1 CV score: 15163453
## Bandwidth: 12547.43 CV score: 19452224
## Bandwidth: 22792.75 CV score: 15513008
## Bandwidth: 17052.64 CV score: 15709986
## Bandwidth: 20218.98 CV score: 15167455
## Bandwidth: 19767.99 CV score: 15156930
## Bandwidth: 19790.05 CV score: 15156924
## Bandwidth: 19781.39 CV score: 15156920
## Bandwidth: 19781.48 CV score: 15156920
## Bandwidth: 19781.47 CV score: 15156920
## Bandwidth: 19781.47 CV score: 15156920
## Bandwidth: 19781.47 CV score: 15156920
## Bandwidth: 19781.47 CV score: 15156920
bw
## [1] 19781.47

Create a regular set of points to estimate parameters for.

r <- rast(vctst, res=10000)
r <- rasterize(vect(ctst), r)
newpts <- geom(as.points(r))[, c("x", "y")]

Run the gwr function

g <- gwr(pan ~ ALT, crds(sp), data=spsf, bandwidth=bw, fit.points=newpts[, 1:2])
g
## Call:
## gwr(formula = pan ~ ALT, data = spsf, coords = crds(sp), bandwidth = bw,
##     fit.points = newpts[, 1:2])
## Kernel function: gwr.Gauss
## Fixed bandwidth: 19781.47
## Fit points: 4090
## Summary of GWR coefficient estimates at fit points:
##                     Min.     1st Qu.      Median     3rd Qu.      Max.
## X.Intercept. -846.293016   77.986323  328.578941  729.597303 3452.1971
## ALT            -3.961744    0.034145    0.201568    0.418714    4.6022

Link the results back to the raster.

slope <- intercept <- r
slope[!is.na(slope)] <- g$SDF$ALT
intercept[!is.na(intercept)] <- g$SDF$"(Intercept)"
s <- c(intercept, slope)
names(s) <- c("intercept", "slope")
plot(s)

image5

See this page for a more detailed example of geographically weighted regression.