Spatial Data Science
  • Spatial data manipulation
  • Spatial data analysis
  • Remote Sensing Image Analysis
  • Case studies
  • Spherical computation
  • The raster package
  • Species distribution modeling
    • Introduction
    • Data preparation
    • Absence and background points
    • Environmental data
    • Model fitting, prediction, and evaluation
    • Modeling methods
    • Geographic Null models
    • References
    • Appendix: Boosted regression trees for ecological modeling
  • R companion to Geographic Information Analysis
Spatial Data Science
  • Docs »
  • Species distribution modeling

Species distribution modeling¶

Robert J. Hijmans and Jane Elith

  • Introduction
  • Data preparation
    • Species occurrence data
    • Importing occurrence data
    • Data cleaning
    • Duplicate records
    • Cross-checking
    • Georeferencing
    • Sampling bias
  • Absence and background points
  • Environmental data
    • Raster data
    • Extracting values from rasters
  • Model fitting, prediction, and evaluation
    • Model fitting
    • Model prediction
    • Model evaluation
  • Modeling methods
    • Types of algorithms and data used in examples
    • Profile methods
      • Bioclim
      • Domain
      • Mahalanobis distance
    • Classical regression models
      • Generalized Linear Models
      • Generalized Additive Models
    • Machine learning methods
      • Maxent
      • Boosted Regression Trees
      • Random Forest
      • Support Vector Machines
    • Combining model predictions
  • Geographic Null models
    • Geographic Distance
    • Convex hulls
    • Circles
    • Presence/absence
  • References
  • Appendix: Boosted regression trees for ecological modeling
    • Introduction
    • Example data
    • Fitting a model
    • Choosing the settings
    • Alternative ways to fit models
    • section{Simplifying the model
    • Plotting the functions and fitted values from the model
    • Interrogate and plot the interactions
    • Predicting to new data
    • Spatial prediction
    • Further reading
Next Previous

© Copyright 2016-2021. License: CC BY-SA 4.0. Source code.