Raster data

Introduction

The terra package has functions for creating, reading, manipulating, and writing raster data. The package provides, among other things, general raster data manipulation functions that can easily be used to develop more specific functions. For example, there are functions to read a chunk of raster values from a file or to convert cell numbers to coordinates and back. The package also implements raster algebra and many other functions for raster data manipulation.

SpatRaster

A SpatRaster represents multi-layer (multi-variable) raster data. A SpatRaster always stores a number of fundamental parameters that describe it. These include the number of columns and rows, the spatial extent, and the Coordinate Reference System. In addition, a SpatRaster can store information about the file in which the raster cell values are stored (if there is such a file). A SpatRaster can also hold (some of) the raster cell values in memory.

Here I create a SpatRaster from scratch. But note that in most cases where real data is analyzed, these objects are created from a file.

library(terra)
## terra version 1.0.10
##
## Attaching package: 'terra'
## The following object is masked from 'package:knitr':
##
##     spin
r <- rast(ncol=10, nrow=10, xmin=-150, xmax=-80, ymin=20, ymax=60)
r
## class       : SpatRaster
## dimensions  : 10, 10, 1  (nrow, ncol, nlyr)
## resolution  : 7, 4  (x, y)
## extent      : -150, -80, 20, 60  (xmin, xmax, ymin, ymax)
## coord. ref. : +proj=longlat +datum=WGS84 +no_defs

SpatRaster r only has the geometry of a raster data set. That is, it knows about its location, resolution, etc., but there are no values associated with it. Let’s assign some values. In this case I assign a vector of random numbers with a length that is equal to the number of cells of the SpatRaster.

values(r) <- runif(ncell(r))
r
## class       : SpatRaster
## dimensions  : 10, 10, 1  (nrow, ncol, nlyr)
## resolution  : 7, 4  (x, y)
## extent      : -150, -80, 20, 60  (xmin, xmax, ymin, ymax)
## coord. ref. : +proj=longlat +datum=WGS84 +no_defs
## source      : memory
## name        :       lyr.1
## min value   : 0.004448606
## max value   :   0.9977923

You can also assign cell numbers (in this case overwriting the previous values)

values(r) <- 1:ncell(r)
r
## class       : SpatRaster
## dimensions  : 10, 10, 1  (nrow, ncol, nlyr)
## resolution  : 7, 4  (x, y)
## extent      : -150, -80, 20, 60  (xmin, xmax, ymin, ymax)
## coord. ref. : +proj=longlat +datum=WGS84 +no_defs
## source      : memory
## name        : lyr.1
## min value   :     1
## max value   :   100

We can plot this object.

plot(r)
# add polygon and points
lon <- c(-116.8, -114.2, -112.9, -111.9, -114.2, -115.4, -117.7)
lat <- c(41.3, 42.9, 42.4, 39.8, 37.6, 38.3, 37.6)
lonlat <- cbind(id=1, part=1, lon, lat)
pts <- vect(lonlat)
pols <- vect(lonlat, type="polygons", crs="+proj=longlat +datum=WGS84")
points(pts, col="red", pch=20, cex=3)
lines(pols, col="blue", lwd=2)

image0

You can crate a multi-layer object using the c method.

r2 <- r * r
r3  <- sqrt(r)
s <- c(r, r2, r3)
s
## class       : SpatRaster
## dimensions  : 10, 10, 3  (nrow, ncol, nlyr)
## resolution  : 7, 4  (x, y)
## extent      : -150, -80, 20, 60  (xmin, xmax, ymin, ymax)
## coord. ref. : +proj=longlat +datum=WGS84 +no_defs
## sources     : memory
##               memory
##               memory
## names       : lyr.1, lyr.1, lyr.1
## min values  :     1,     1,     1
## max values  :   100, 10000,    10
plot(s)

image1