
Spatial Data in R

Robert J. Hijmans

Nov 30, 2023

CONTENTS

1 Introduction 1

2 Spatial data 3
2.1 Introduction . 3
2.2 Vector data . 3
2.3 Raster data . 4
2.4 Simple representation of spatial data . 4

3 Vector data 9
3.1 Introduction . 9
3.2 Points . 9
3.3 Lines and polygons . 11

4 Raster data 13
4.1 Introduction . 13
4.2 SpatRaster . 13

5 Reading and writing spatial data 17
5.1 Introduction . 17
5.2 Vector files . 17

5.2.1 Reading . 17
5.2.2 Writing . 18

5.3 Raster files . 18
5.3.1 Reading raster data . 18
5.3.2 Writing raster data . 19

6 Coordinate Reference Systems 21
6.1 Introduction . 21
6.2 Coordinate Reference Systems (CRS) . 21

6.2.1 Angular coordinates . 21
6.2.2 Projections . 21
6.2.3 Notation . 22

6.3 Assigning a CRS . 23
6.4 Transforming vector data . 23
6.5 Transforming raster data . 24

7 Vector data manipulation 29
7.1 Basics . 30

7.1.1 Geometry and attributes . 30
7.1.2 Variables . 31
7.1.3 Merge . 33

i

7.1.4 Records . 33
7.2 Append and aggregate . 34
7.3 Append . 34
7.4 Aggregate . 36
7.5 Overlay . 39

7.5.1 Erase . 39
7.5.2 Intersect . 40
7.5.3 Union . 41
7.5.4 Cover . 42
7.5.5 Difference . 44

7.6 Spatial queries . 45

8 Raster data manipulation 47
8.1 Introduction . 47
8.2 Creating SpatRaster objects . 47
8.3 Raster algebra . 52
8.4 ‘High-level’ functions . 54

8.4.1 Modifying a SpatRaster object . 54
8.4.2 Overlay . 56
8.4.3 Classify . 56
8.4.4 Focal methods . 58
8.4.5 Distance . 58
8.4.6 Spatial configuration . 58
8.4.7 Predictions . 58
8.4.8 Vector to raster conversion . 58

8.5 Summarizing functions . 59
8.6 Helper functions . 60
8.7 Accessing cell values . 60
8.8 Coercion to other classes . 63

9 Maps 65
9.1 SpatVector . 65
9.2 SpatRaster . 72
9.3 Basemaps . 79
9.4 Interactive maps . 80

ii

CHAPTER

ONE

INTRODUCTION

This is an introduction to spatial data manipulation with R and the terra package. In this context “spatial data” refers to
data about geographical locations, that is, places on earth. So to be more precise, we should speak about “geospatial”
data, but we use the shorthand “spatial”.

You can install the latest released version of terra from CRAN with install.packages("terra"). The development
version is available from github, and see the instructions there for installation. The github is a good place to report
what you believe to be bugs (errors in the software) or to request new features. You can ask questions on how to use
terra on stackoverflow.

This is the introductory part of a set of resources for learning about spatial analysis and modeling with R. Here we
cover the basics of data manipulation.

You need to know some of the basics of the R language before you can work with spatial data in R. If you have not
worked with R before, or not recently, have a look at this brief introduction to R.

1

https://www.github.com/rspatial/terra
https://www.github.com/rspatial/terra
https://stackoverflow.com/search?tab=newest&q=terra
https://rspatial.org/intr

Spatial Data in R

2 Chapter 1. Introduction

CHAPTER

TWO

SPATIAL DATA

2.1 Introduction

Spatial phenomena can generally be thought of as either discrete objects with clear boundaries or as a continuous
phenomena that can be observed everywhere, but that do not have natural boundaries. Discrete spatial objects may
refer to a river, road, country, town, or a research site. Examples of continuous phenomena, or “spatial fields”, include
elevation, temperature, and air quality.

Spatial objects are usually represented by vector data. Such data consists of a description of the “geometry” or “shape”
of the objects, and normally also includes additional variables. For example, a vector data set may represent the borders
of the countries of the world (geometry), and also store their names and the size of their population in 2015; or it may
have the geometry of the roads in an area, as well as their type and names. These additional variables are often referred
to as “attributes”. Continuous spatial data (fields) are usually represented with a raster data structure. We discuss these
two data types in turn.

2.2 Vector data

The main vector data types are points, lines and polygons. In all cases, the geometry of these data structures consists
of sets of coordinate pairs (x, y). Points are the simplest case. Each point has one coordinate pair, and n associated
variables. For example, a point might represent a place where a rat was trapped, and the attributes could include the
date it was captured, the person who captured it, the species size and sex, and information about the habitat. It is also
possible to combine several points into a multi-point structure, with a single attribute record. For example, all the coffee
shops in a town could be considered as a single geometry.

The geometry of lines is a just a little bit more complex. First note that in this context, the term ‘line’ refers to a set of
one or more polylines (connected series of line segments). For example, in spatial analysis, a river and all its tributaries
could be considered as a single ‘line’ (but they could also also be several lines, perhaps one for each tributary river).
Lines are represented as ordered sets of coordinates (nodes). The actual line segments can be computed (and drawn
on a map) by connecting the points. Thus, the representation of a line is very similar to that of a multi-point structure.
The main difference is that for a line the ordering of the points is important, because we need to know in which order
the points should be connected.

A network (e.g. a road or river network), or spatial graph, is a special type of lines geometry where there is additional
information about things like flow, connectivity, direction, and distance.

A polygon refers to a set of closed polylines. The geometry is very similar to that of lines, but to close a polygon the last
coordinate pair coincides with the first pair. A complication with polygons is that they can have holes (that is a polygon
entirely enclosed by another polygon, that serves to remove parts of the enclosing polygon (for example to show an
island inside a lake. Also, valid polygons do not self-intersect (but it is OK for a line to self-cross). Again, multiple
polygons can be considered as a single geometry. For example, Indonesia consists of many islands. Each island can

3

Spatial Data in R

be represented by a single polygon, but together then can be represent a single (multi-) polygon representing the entire
country.

2.3 Raster data

Raster data is commonly used to represent spatially continuous phenomena such as elevation. A raster divides the world
into a grid of equally sized rectangles (referred to as cells or, in the context of satellite remote sensing, pixels) that all
have one or more values (or missing values) for the variables of interest. A raster cell value should normally represent
the average (or majority) value for the area it covers. However, in some cases the values are actually estimates for the
center of the cell (in essence becoming a regular set of points with an attribute).

In contrast to vector data, in raster data the geometry is not explicitly stored as coordinates. It is implicitly set by
knowing the spatial extent and the number or rows and columns in which the area is divided. From the extent and
number of rows and columns, the size of the raster cells (spatial resolution) can be computed. While raster cells can
be thought of as a set of regular polygons, it would be very inefficient to represent the data that way as coordinates for
each cell would have to be stored explicitly. Doing so would also dramatically increase processing time.

Continuous surface data are sometimes stored as triangulated irregular networks (TINs); these are not discussed here.

2.4 Simple representation of spatial data

The basic data types in R are numbers, characters, logical (TRUE or FALSE) and factor values. Values of a single type
can be combined in vectors and matrices, and variables of multiple types can be combined into a data.frame. We can
represent (only very) basic spatial data with these data types. Let’s say we have the location (represented by longitude
and latitude) of ten weather stations (named A to J) and their annual precipitation.

In the example below we make a very simple map. Note that a map is special type of plot (like a scatter plot, barplot,
etc.). A map is a plot of geospatial data that also has labels and other graphical objects such as a scale bar or legend.
The spatial data itself should not be referred to as a map.

name <- LETTERS[1:10]
longitude <- c(-116.7, -120.4, -116.7, -113.5, -115.5,

-120.8, -119.5, -113.7, -113.7, -110.7)
latitude <- c(45.3, 42.6, 38.9, 42.1, 35.7, 38.9,

36.2, 39, 41.6, 36.9)
stations <- cbind(longitude, latitude)
Simulated rainfall data
set.seed(0)
precip <- round((runif(length(latitude))*10)^3)

A map of point locations is not that different from a basic x-y scatter plot. Here I make a plot (a map in this case) that
shows the location of the weather stations, and the size of the dots is proportional to the amount of precipitation. The
point size is set with argument cex.

psize <- 1 + precip/500
plot(stations, cex=psize, pch=20, col='red', main='Precipitation')

add names to plot
text(stations, name, pos=4)

add a legend
breaks <- c(100, 250, 500, 1000)

(continues on next page)

4 Chapter 2. Spatial data

http://rspatial.org/intr/2-basic-data-types.html

Spatial Data in R

(continued from previous page)

legend.psize <- 1+breaks/500
legend("topright", legend=breaks, pch=20, pt.cex=legend.psize, col='red', bg='gray')

Note that the data are represented by “longitude, latitude”, in that order, do not use “latitude, longitude” because on
most maps latitude (North/South) is used for the vertical axis and longitude (East/West) for the horizontal axis. This is
important to keep in mind, as it is a very common source of mistakes!

We can add multiple sets of points to the plot, and even draw lines and polygons:

lon <- c(-116.8, -114.2, -112.9, -111.9, -114.2, -115.4, -117.7)
lat <- c(41.3, 42.9, 42.4, 39.8, 37.6, 38.3, 37.6)
x <- cbind(lon, lat)

plot(stations, main='Precipitation')

polygon(x, col='blue', border='light blue')
(continues on next page)

2.4. Simple representation of spatial data 5

Spatial Data in R

(continued from previous page)

lines(stations, lwd=3, col='red')
points(x, cex=2, pch=20)
points(stations, cex=psize, pch=20, col='red', main='Precipitation')

The above illustrates how numeric vectors representing locations can be used to draw simple maps. It also shows how
points can (and typically are) represented by pairs of numbers. A line and a polygon can be represented by a number
of these points. Polygons need to “closed”, that is, the first point must coincide with the last point, but the polygon
function took care of that for us.

There are cases where a simple approach like this may suffice and you may come across this in older R code or packages.
Likewise, raster data could be represented by a matrix or higher-order array. Particularly when only dealing with point
data such an approach may be practical. For example, a spatial data set representing points and attributes could be
made by combining geometry and attributes in a single data.frame.

wst <- data.frame(longitude, latitude, name, precip)
wst

(continues on next page)

6 Chapter 2. Spatial data

Spatial Data in R

(continued from previous page)

longitude latitude name precip
1 -116.7 45.3 A 721
2 -120.4 42.6 B 19
3 -116.7 38.9 C 52
4 -113.5 42.1 D 188
5 -115.5 35.7 E 749
6 -120.8 38.9 F 8
7 -119.5 36.2 G 725
8 -113.7 39.0 H 843
9 -113.7 41.6 I 289
10 -110.7 36.9 J 249

However, wst is a data.frame and R does not automatically understand the special meaning of the first two columns, or
to what coordinate reference system it refers (longitude/latitude, or perhaps UTM zone 17S, or?).

Moreover, it is non-trivial to do some basic spatial operations. For example, the blue polygon drawn on the map
above might represent a state, and a next question might be which of the 10 stations fall within that polygon. And
how about any other operation on spatial data, including reading from and writing data to files? To facilitate such
operation a number of R packages have been developed that define new spatial data types that can be used for this type
of specialized operations.

Recent packages in R that define such spatial data structures include terra and sf. These packages replace a set of
older packages including raster and sp.

We mostly use the terra package in these materials. You can install the latest released version of terra from CRAN
with install.packages("terra")

2.4. Simple representation of spatial data 7

Spatial Data in R

8 Chapter 2. Spatial data

CHAPTER

THREE

VECTOR DATA

3.1 Introduction

The terra package defines a set of classes to represent spatial data. A class defines a particular data type. The
data.frame is an example of a class. Any particular data.frame you create is an object (instantiation) of that class.

The main reason for defining classes is to create a standard representation of a particular data type to make it easier to
write functions (known as “methods”) for them. See Hadley Wickham’s Advanced R or John Chambers’ Software for
data analysis for a detailed discussion of the use of classes in R.

terra introduces a number of classes with names that start with Spat. For vector data, the relevant class is
SpatVector. These classes represent geometries as well as attributes (variables) describing the geometries.

It is possible to create SpatVector objects from scratch with R code. This is very useful when creating a small self
contained example to illustrate something, for example to ask a question about how to do a particular operation; without
needing to give access to the real data you are using (which is always cumbersome). It is also frequently done when
using coordinates that were obtained with a GPS. But in most other cases, you will read these from a file or database,
see Chapter 5 for examples.

To get started, let’s make some SpatVector objects from scratch anyway, using the same data as were used in the previous
chapter.

3.2 Points

longitude <- c(-116.7, -120.4, -116.7, -113.5, -115.5, -120.8, -119.5, -113.7, -113.7, -
→˓110.7)
latitude <- c(45.3, 42.6, 38.9, 42.1, 35.7, 38.9, 36.2, 39, 41.6, 36.9)
lonlat <- cbind(longitude, latitude)

Now create a SpatVector object. First load the terra package from the library. If this command fails with Error in
library(terra) : there is no package called ‘terra’, then you need to install the package first, with
install.packages("terra")

library(terra)
terra 1.7.62
##
Attaching package: 'terra'
The following object is masked from 'package:knitr':
##
spin
pts <- vect(lonlat)

9

http://adv-r.had.co.nz/
http://www.springer.com/us/book/9780387759357
http://www.springer.com/us/book/9780387759357
./5-files.html

Spatial Data in R

Let’s check what kind of object pts is.

class (pts)
[1] "SpatVector"
attr(,"package")
[1] "terra"

And what is inside of it

pts
class : SpatVector
geometry : points
dimensions : 10, 0 (geometries, attributes)
extent : -120.8, -110.7, 35.7, 45.3 (xmin, xmax, ymin, ymax)
coord. ref. :
geom(pts)
geom part x y hole
[1,] 1 1 -116.7 45.3 0
[2,] 2 1 -120.4 42.6 0
[3,] 3 1 -116.7 38.9 0
[4,] 4 1 -113.5 42.1 0
[5,] 5 1 -115.5 35.7 0
[6,] 6 1 -120.8 38.9 0
[7,] 7 1 -119.5 36.2 0
[8,] 8 1 -113.7 39.0 0
[9,] 9 1 -113.7 41.6 0
[10,] 10 1 -110.7 36.9 0

So we see that the object has the coordinates we supplied, but also an extent. This spatial extent was computed from
the coordinates. There is also a coordinate reference system (“CRS”, discussed in more detail later). We did not provide
the CRS when we created pts. That is not good, so let’s recreate the object, and now provide a CRS.

crdref <- "+proj=longlat +datum=WGS84"
pts <- vect(lonlat, crs=crdref)
pts
class : SpatVector
geometry : points
dimensions : 10, 0 (geometries, attributes)
extent : -120.8, -110.7, 35.7, 45.3 (xmin, xmax, ymin, ymax)
coord. ref. : +proj=longlat +datum=WGS84 +no_defs
crs(pts)
[1] "GEOGCRS[\"unknown\",\n DATUM[\"World Geodetic System 1984\",\n ␣
→˓ELLIPSOID[\"WGS 84\",6378137,298.257223563,\n LENGTHUNIT[\"metre\",1]],\n ␣
→˓ ID[\"EPSG\",6326]],\n PRIMEM[\"Greenwich\",0,\n ANGLEUNIT[\"degree\",0.
→˓0174532925199433],\n ID[\"EPSG\",8901]],\n CS[ellipsoidal,2],\n AXIS[\
→˓"longitude\",east,\n ORDER[1],\n ANGLEUNIT[\"degree\",0.
→˓0174532925199433,\n ID[\"EPSG\",9122]]],\n AXIS[\"latitude\",
→˓north,\n ORDER[2],\n ANGLEUNIT[\"degree\",0.0174532925199433,\n ␣
→˓ ID[\"EPSG\",9122]]]]"

We can add attributes (variables) to the SpatVector object. First we need a data.frame with the same number of
rows as there are geometries.

10 Chapter 3. Vector data

Spatial Data in R

Generate random precipitation values, same quantity as points
precipvalue <- runif(nrow(lonlat), min=0, max=100)
df <- data.frame(ID=1:nrow(lonlat), precip=precipvalue)

Combine the SpatVector with the data.frame.

ptv <- vect(lonlat, atts=df, crs=crdref)

To see what is inside:

ptv
class : SpatVector
geometry : points
dimensions : 10, 2 (geometries, attributes)
extent : -120.8, -110.7, 35.7, 45.3 (xmin, xmax, ymin, ymax)
coord. ref. : +proj=longlat +datum=WGS84 +no_defs
names : ID precip
type : <int> <num>
values : 1 98.93
2 15.76
3 68.81

3.3 Lines and polygons

Making a SpatVector of points was easy. Making a SpatVector of lines or polygons is a bit more complex, but stil
relatively straightforward.

lon <- c(-116.8, -114.2, -112.9, -111.9, -114.2, -115.4, -117.7)
lat <- c(41.3, 42.9, 42.4, 39.8, 37.6, 38.3, 37.6)
lonlat <- cbind(id=1, part=1, lon, lat)
lonlat
id part lon lat
[1,] 1 1 -116.8 41.3
[2,] 1 1 -114.2 42.9
[3,] 1 1 -112.9 42.4
[4,] 1 1 -111.9 39.8
[5,] 1 1 -114.2 37.6
[6,] 1 1 -115.4 38.3
[7,] 1 1 -117.7 37.6
lns <- vect(lonlat, type="lines", crs=crdref)
lns
class : SpatVector
geometry : lines
dimensions : 1, 0 (geometries, attributes)
extent : -117.7, -111.9, 37.6, 42.9 (xmin, xmax, ymin, ymax)
coord. ref. : +proj=longlat +datum=WGS84 +no_defs

pols <- vect(lonlat, type="polygons", crs=crdref)
pols
class : SpatVector
geometry : polygons

(continues on next page)

3.3. Lines and polygons 11

Spatial Data in R

(continued from previous page)

dimensions : 1, 0 (geometries, attributes)
extent : -117.7, -111.9, 37.6, 42.9 (xmin, xmax, ymin, ymax)
coord. ref. : +proj=longlat +datum=WGS84 +no_defs

Behind the scenes the class deals with the complexity of accommodating for the possibility of multiple polygons, each
consisting of multiple sub-polygons, some of which may be “holes”. You do not need to understand how these structures
are organized. The main take home message is that a SpatVector stores geometries (coordinates), the name of the
coordinate reference system, and attributes.

We can make use plot to make a map.

plot(pols, las=1)
plot(pols, border='blue', col='yellow', lwd=3, add=TRUE)
points(pts, col='red', pch=20, cex=3)

We’ll make more fancy maps later.

12 Chapter 3. Vector data

9-maps.html

CHAPTER

FOUR

RASTER DATA

4.1 Introduction

The terra package has functions for creating, reading, manipulating, and writing raster data. The package provides,
among other things, general raster data manipulation functions that can easily be used to develop more specific func-
tions. For example, there are functions to read a chunk of raster values from a file or to convert cell numbers to
coordinates and back. The package also implements raster algebra and many other functions for raster data manipula-
tion.

4.2 SpatRaster

A SpatRaster represents multi-layer (multi-variable) raster data. A SpatRaster always stores a number of funda-
mental parameters decribing its geometry. These include the number of columns and rows, the spatial extent, and the
Coordinate Reference System. In addition, a SpatRaster can store information about the file in which the raster cell
values are stored. Or, if there is no such a file, a SpatRaster can hold the cell values in memory.

Here I create a SpatRaster from scratch. But note that in most cases where real data is analyzed, these objects are
created from a file.

library(terra)
terra 1.7.62
r <- rast(ncol=10, nrow=10, xmin=-150, xmax=-80, ymin=20, ymax=60)
r
class : SpatRaster
dimensions : 10, 10, 1 (nrow, ncol, nlyr)
resolution : 7, 4 (x, y)
extent : -150, -80, 20, 60 (xmin, xmax, ymin, ymax)
coord. ref. : lon/lat WGS 84 (CRS84) (OGC:CRS84)

SpatRaster r only has the geometry of a raster data set. That is, it knows about its location, resolution, etc., but there
are no values associated with it. Let’s assign some values. In this case I assign a vector of random numbers with a
length that is equal to the number of raster cells.

values(r) <- runif(ncell(r))
r
class : SpatRaster
dimensions : 10, 10, 1 (nrow, ncol, nlyr)
resolution : 7, 4 (x, y)
extent : -150, -80, 20, 60 (xmin, xmax, ymin, ymax)
coord. ref. : lon/lat WGS 84 (CRS84) (OGC:CRS84)

(continues on next page)

13

Spatial Data in R

(continued from previous page)

source(s) : memory
name : lyr.1
min value : 0.002960137
max value : 0.985635265

You could also assign cell numbers (in this case overwriting the previous values)

values(r) <- 1:ncell(r)
r
class : SpatRaster
dimensions : 10, 10, 1 (nrow, ncol, nlyr)
resolution : 7, 4 (x, y)
extent : -150, -80, 20, 60 (xmin, xmax, ymin, ymax)
coord. ref. : lon/lat WGS 84 (CRS84) (OGC:CRS84)
source(s) : memory
name : lyr.1
min value : 1
max value : 100

We can plot this object.

plot(r)

add polygon and points
lon <- c(-116.8, -114.2, -112.9, -111.9, -114.2, -115.4, -117.7)
lat <- c(41.3, 42.9, 42.4, 39.8, 37.6, 38.3, 37.6)
lonlat <- cbind(id=1, part=1, lon, lat)
pts <- vect(lonlat)
pols <- vect(lonlat, type="polygons", crs="+proj=longlat +datum=WGS84")

points(pts, col="red", pch=20, cex=3)
lines(pols, col="blue", lwd=2)

14 Chapter 4. Raster data

Spatial Data in R

You can create a multi-layer object using the c method.

r2 <- r * r
r3 <- sqrt(r)
s <- c(r, r2, r3)
s
class : SpatRaster
dimensions : 10, 10, 3 (nrow, ncol, nlyr)
resolution : 7, 4 (x, y)
extent : -150, -80, 20, 60 (xmin, xmax, ymin, ymax)
coord. ref. : lon/lat WGS 84 (CRS84) (OGC:CRS84)
source(s) : memory
names : lyr.1, lyr.1, lyr.1
min values : 1, 1, 1
max values : 100, 10000, 10
plot(s)

4.2. SpatRaster 15

Spatial Data in R

16 Chapter 4. Raster data

CHAPTER

FIVE

READING AND WRITING SPATIAL DATA

5.1 Introduction

Reading and writing spatial data is complicated by the fact that there are many different file formats. However, there
are a few formats that are most common that we discuss here.

5.2 Vector files

The shapefile is the most commonly used file format for vector data (if you are not familiar with this file format,
an important thing to understand is that a shapefile is really a set of at least three (ideally four) files, with all the same
name, but different extension. For shapefile x you must have, in the same directory, these three files: x.shp, x.shx,
x.dbf, and ideally also x.prj.

It is easy to read and write such files. Here we use a shapefile that comes with the terra package.

5.2.1 Reading

We use the system.file function to get the full path name of the file’s location. We need to do this as the location of
this file depends on where the terra package is installed. You should not use the system.file function for your own
files. It only serves for creating examples with data that ship with R. With your own files, just use the filename (and
path if the file is not in your working directory).

library(terra)
filename <- system.file("ex/lux.shp", package="terra")
basename(filename)
[1] "lux.shp"

Now we have the filename we can use the vect function to read the file.

s <- vect(filename)
s
class : SpatVector
geometry : polygons
dimensions : 12, 6 (geometries, attributes)
extent : 5.74414, 6.528252, 49.44781, 50.18162 (xmin, xmax, ymin, ymax)
source : lux.shp
coord. ref. : lon/lat WGS 84 (EPSG:4326)
names : ID_1 NAME_1 ID_2 NAME_2 AREA POP
type : <num> <chr> <num> <chr> <num> <int>

(continues on next page)

17

https://en.wikipedia.org/wiki/Shapefile

Spatial Data in R

(continued from previous page)

values : 1 Diekirch 1 Clervaux 312 18081
1 Diekirch 2 Diekirch 218 32543
1 Diekirch 3 Redange 259 18664

The vect function returns SpatVector objects. It is important to recognise the difference between this type of R object
(SpatVector), and the file (“shapefile”) that was used to create it. Thus, you should never say “I have a shapefile in R”,
say “I have a SpatVector of polygons in R”, (and in some cases you can add “created from a shapefile”). The shapefile
is one of many file formats for vector data.

5.2.2 Writing

You can write new files using the writeVector method. You need to add argument overwrite=TRUE if you want to
overwrite an existing file.

outfile <- "shp_test.shp"
writeVector(s, outfile, overwrite=TRUE)

To remove the file again you can use file.remove or unlink (be careful!)

ff <- list.files(patt="^shptest")
file.remove(ff)
logical(0)

5.3 Raster files

The terra package can read and write several raster file formats.

5.3.1 Reading raster data

Again we need to get a filename for an example file.

f <- system.file("ex/logo.tif", package="terra")
basename(f)
[1] "logo.tif"

Now we can do

r <- rast(f)
r
class : SpatRaster
dimensions : 77, 101, 3 (nrow, ncol, nlyr)
resolution : 1, 1 (x, y)
extent : 0, 101, 0, 77 (xmin, xmax, ymin, ymax)
coord. ref. : Cartesian (Meter)
source : logo.tif
colors RGB : 1, 2, 3
names : red, green, blue
min values : 0, 0, 0
max values : 255, 255, 255

18 Chapter 5. Reading and writing spatial data

Spatial Data in R

Note that x is a SpatRaster of three layers (“bands”). We can subset it to get a single layer.

r2 <- r[[2]]
r2
class : SpatRaster
dimensions : 77, 101, 1 (nrow, ncol, nlyr)
resolution : 1, 1 (x, y)
extent : 0, 101, 0, 77 (xmin, xmax, ymin, ymax)
coord. ref. : Cartesian (Meter)
source : logo.tif
name : green
min value : 0
max value : 255

The same approach holds for other raster file formats, including GeoTiff, NetCDF, Imagine, and ESRI Grid formats.

5.3.2 Writing raster data

Use writeRaster to write raster data. You must provide a SpatRaster and a filename. The file format will be guessed
from the filename extension. If that does not work you can provide an argument like format=GTiff. Note the argument
overwrite=TRUE and see ?writeRaster for more arguments, such as datatype= to set the a specific datatype (e.g.,
integer).

x <- writeRaster(r, "test_output.tif", overwrite=TRUE)
x
class : SpatRaster
dimensions : 77, 101, 3 (nrow, ncol, nlyr)
resolution : 1, 1 (x, y)
extent : 0, 101, 0, 77 (xmin, xmax, ymin, ymax)
coord. ref. : Cartesian (Meter)
source : test_output.tif
colors RGB : 1, 2, 3
names : red, green, blue
min values : 0, 0, 0
max values : 255, 255, 255

5.3. Raster files 19

Spatial Data in R

20 Chapter 5. Reading and writing spatial data

CHAPTER

SIX

COORDINATE REFERENCE SYSTEMS

6.1 Introduction

A very important aspect of spatial data is the coordinate reference system (CRS) that is used. For example, a location
of (140, 12) is not meaningful if you do know where the origin (0,0) is and if the x-coordinate is 140 meters, feet,
nautical miles, kilometers, or perhaps degrees away from the x-origin.

6.2 Coordinate Reference Systems (CRS)

6.2.1 Angular coordinates

The earth has an irregular spheroid-like shape. The natural coordinate reference system for geographic data is longi-
tude/latitude. This is an angular coordinate reference system. The latitude 𝜑 (phi) of a point is the angle between the
equatorial plane and the line that passes through a point and the center of the Earth. Longitude 𝜆 (lambda) is the angle
from a reference meridian (lines of constant longitude) to a meridian that passes through the point.

Obviously we cannot actually measure these angles. But we can estimate them. To do so, you need a model of the
shape of the earth. Such a model is called a “datum”. The simplest datums are a spheroid (a sphere that is “flattened”
at the poles and bulges at the equator). More complex datums allow for more variation in the earth’s shape. The most
commonly used datum is called WGS84 (World Geodesic System 1984). This is very similar to NAD83 (The North
American Datum of 1983). Other, local datums exist to more precisely record locations for a single country or region.

So the basic way to record a location is a coordinate pair in degrees and a reference datum. Sometimes people say that
their coordinates are “in WGS84”. That does not tell us much; they typically mean to say that they are longitude/latitude
relative to the WGS84 datum. Likewise longitude/latitude coordinates are sometimes referred to as “geographic” co-
ordinates. That is rather odd, if planar coordinate reference systems (see below) are not geographic, what are they?

6.2.2 Projections

A major question in spatial analysis and cartography is how to transform this three dimensional angular system to a two
dimensional planar (sometimes called “Cartesian”) system. A planar system is easier to use for certain calculations and
required to make maps (unless you have a 3-d printer). The different types of planar coordinate reference systems are
referred to as “projections”. Examples are “Mercator”, “UTM”, “Robinson”, “Lambert”, “Sinusoidal” and “Albers”.

There is not one best projection. Some projections can be used for a map of the whole world; other projections are
appropriate for small areas only. One of the most important characteristics of a map projection is whether it is “equal
area” (the scale of the map is constant) or “conformal” (the shapes of the geographic features are as they are seen on a
globe). No two dimensional map projection can be both conformal and equal-area (but they can be approximately both
for smaller areas, e.g. UTM, or Lambert Equal Area for a larger area), and some are neither.

21

Spatial Data in R

6.2.3 Notation

A planar CRS is defined by a projection, datum, and a set of parameters. The parameters determine things like where
the center of the map is. The number of parameters depends on the projection. It is therefore not trivial to document a
projection used, and several systems exist. In R we used to depend on the PROJ.4 notation. PROJ.4 is the name of a
software library that is commonly used for CRS transformation.

Here is a list of commonly used projections and their parameters in PROJ4 notation. You can find many more of these
on spatialreference.org

The PROJ.4 notation is no longer fully supported in the newer versions of the library (that was renamed to 𝑃𝑅𝜑𝐽).
It still works for CRSs with the WGS84 datum. For other cases you have to use a EPSG code (if available) or a
Well-Known-Text notation.

Most commonly used CRSs have been assigned a “EPSG code” (EPSG stands for European Petroleum
Survey Group). This is a unique ID that can be a simple way to identify a CRS. For example
EPSG:27561 is equivalent to +proj=lcc +lat_1=49.5 +lat_0=49.5 +lon_0=0 +k_0=0.999877341 +x_0=6
+y_0=2 +a=6378249.2 +b=6356515 +towgs84=-168,-60,320,0,0,0,0 +pm=paris +units=m +no_defs.

Now let’s look at an example with a spatial data set in R.

library(terra)
terra 1.7.62
f <- system.file("ex/lux.shp", package="terra")
p <- vect(f)
p
class : SpatVector
geometry : polygons
dimensions : 12, 6 (geometries, attributes)
extent : 5.74414, 6.528252, 49.44781, 50.18162 (xmin, xmax, ymin, ymax)
source : lux.shp
coord. ref. : lon/lat WGS 84 (EPSG:4326)
names : ID_1 NAME_1 ID_2 NAME_2 AREA POP
type : <num> <chr> <num> <chr> <num> <int>
values : 1 Diekirch 1 Clervaux 312 18081
1 Diekirch 2 Diekirch 218 32543
1 Diekirch 3 Redange 259 18664

We can inspect the coordinate reference system like this.

crs(p)
[1] "GEOGCRS[\"WGS 84\",\n DATUM[\"World Geodetic System 1984\",\n ␣
→˓ELLIPSOID[\"WGS 84\",6378137,298.257223563,\n LENGTHUNIT[\"metre\",1]]],\n ␣
→˓ PRIMEM[\"Greenwich\",0,\n ANGLEUNIT[\"degree\",0.0174532925199433]],\n ␣
→˓CS[ellipsoidal,2],\n AXIS[\"geodetic latitude (Lat)\",north,\n ␣
→˓ORDER[1],\n ANGLEUNIT[\"degree\",0.0174532925199433]],\n AXIS[\
→˓"geodetic longitude (Lon)\",east,\n ORDER[2],\n ANGLEUNIT[\
→˓"degree\",0.0174532925199433]],\n ID[\"EPSG\",4326]]"

22 Chapter 6. Coordinate Reference Systems

ftp://ftp.remotesensing.org/proj/OF90-284.pdf
http://www.remotesensing.org/geotiff/proj_list/
http://spatialreference.org/ref/epsg/4326/

Spatial Data in R

6.3 Assigning a CRS

Sometimes we have data without a CRS. This can be because the file used was incomplete, or perhaps because we
created the data ourselves with R code. In that case we can assign the CRS if we know what it should be. Here I first
remove the CRS of pp and then I set it again.

pp <- p
crs(pp) <- ""
crs(pp)
[1] ""
crs(pp) <- "+proj=longlat +datum=WGS84"
crs(pp)
[1] "GEOGCRS[\"unknown\",\n DATUM[\"World Geodetic System 1984\",\n ␣
→˓ELLIPSOID[\"WGS 84\",6378137,298.257223563,\n LENGTHUNIT[\"metre\",1]],\n ␣
→˓ ID[\"EPSG\",6326]],\n PRIMEM[\"Greenwich\",0,\n ANGLEUNIT[\"degree\",0.
→˓0174532925199433],\n ID[\"EPSG\",8901]],\n CS[ellipsoidal,2],\n AXIS[\
→˓"longitude\",east,\n ORDER[1],\n ANGLEUNIT[\"degree\",0.
→˓0174532925199433,\n ID[\"EPSG\",9122]]],\n AXIS[\"latitude\",
→˓north,\n ORDER[2],\n ANGLEUNIT[\"degree\",0.0174532925199433,\n ␣
→˓ ID[\"EPSG\",9122]]]]"

Note that you should not use this approach to change the CRS of a data set from what it is to what you want it to be.
Assigning a CRS is like labeling something. You need to provide the label that corresponds to the item. Not to what
you would like it to be. For example if you label a bicycle, you can write “bicycle”. Perhaps you would prefer a car, and
you can label your bicycle as “car” but that would not do you any good. It is still a bicycle. You can try to transform
your bicycle into a car. That would not be easy. Transforming spatial data is easier.

6.4 Transforming vector data

We can transform these data to a new data set with another CRS using the project method.

Here we use the Robinson projection. First we need to find the correct notation.

newcrs <- "+proj=robin +datum=WGS84"

Now use it

rob <- terra::project(p, newcrs)
rob
class : SpatVector
geometry : polygons
dimensions : 12, 6 (geometries, attributes)
extent : 471320.7, 536010.5, 5269709, 5345677 (xmin, xmax, ymin, ymax)
coord. ref. : +proj=robin +lon_0=0 +x_0=0 +y_0=0 +datum=WGS84 +units=m +no_defs
names : ID_1 NAME_1 ID_2 NAME_2 AREA POP
type : <num> <chr> <num> <chr> <num> <int>
values : 1 Diekirch 1 Clervaux 312 18081
1 Diekirch 2 Diekirch 218 32543
1 Diekirch 3 Redange 259 18664

After the transformation, the units of the geometry are no longer in degrees, but in meters away from (longitude=0,
latitude=0). The spatial extent of the data is also in these units.

6.3. Assigning a CRS 23

Spatial Data in R

We can backtransform to longitude/latitude:

p2 <- terra::project(rob, "+proj=longlat +datum=WGS84")

6.5 Transforming raster data

Vector data can be transformed from lon/lat coordinates to planar and back without loss of precision. This is not the
case with raster data. A raster consists of rectangular cells of the same size (in terms of the units of the CRS; their actual
size may vary). It is not possible to transform cell by cell. For each new cell, values need to be estimated based on
the values in the overlapping old cells. If the values are categorical data, the “nearest neighbor” method is commonly
used. Otherwise some sort of interpolation is employed (e.g. “bilinear”).

Because projection of rasters affects the cell values, in most cases you will want to avoid projecting raster data and
rather project vector data. But here is how you can project raster data.

r <- rast(xmin=-110, xmax=-90, ymin=40, ymax=60, ncols=40, nrows=40)
values(r) <- 1:ncell(r)
r
class : SpatRaster
dimensions : 40, 40, 1 (nrow, ncol, nlyr)
resolution : 0.5, 0.5 (x, y)
extent : -110, -90, 40, 60 (xmin, xmax, ymin, ymax)
coord. ref. : lon/lat WGS 84 (CRS84) (OGC:CRS84)
source(s) : memory
name : lyr.1
min value : 1
max value : 1600
plot(r)

24 Chapter 6. Coordinate Reference Systems

Spatial Data in R

The simplest approach is to provide a new crs (the Robinson crs in this case)

newcrs
[1] "+proj=robin +datum=WGS84"
pr1 <- terra::project(r, newcrs)
crs(pr1)
[1] "PROJCRS[\"unknown\",\n BASEGEOGCRS[\"unknown\",\n DATUM[\"World␣
→˓Geodetic System 1984\",\n ELLIPSOID[\"WGS 84\",6378137,298.257223563,\n ␣
→˓ LENGTHUNIT[\"metre\",1]],\n ID[\"EPSG\",6326]],\n PRIMEM[\
→˓"Greenwich\",0,\n ANGLEUNIT[\"degree\",0.0174532925199433],\n ␣
→˓ID[\"EPSG\",8901]]],\n CONVERSION[\"unknown\",\n METHOD[\"Robinson\"],\n ␣
→˓ PARAMETER[\"Longitude of natural origin\",0,\n ANGLEUNIT[\"degree\",0.
→˓0174532925199433],\n ID[\"EPSG\",8802]],\n PARAMETER[\"False easting\
→˓",0,\n LENGTHUNIT[\"metre\",1],\n ID[\"EPSG\",8806]],\n ␣
→˓PARAMETER[\"False northing\",0,\n LENGTHUNIT[\"metre\",1],\n ID[\
→˓"EPSG\",8807]]],\n CS[Cartesian,2],\n AXIS[\"(E)\",east,\n ␣
→˓ORDER[1],\n LENGTHUNIT[\"metre\",1,\n ID[\"EPSG\",9001]]],\n␣
→˓ AXIS[\"(N)\",north,\n ORDER[2],\n LENGTHUNIT[\"metre\",1,\
→˓n ID[\"EPSG\",9001]]]]"

(continues on next page)

6.5. Transforming raster data 25

Spatial Data in R

(continued from previous page)

plot(pr1)

But that is not a good method. As you should want to assure that you project to exactly the raster parameters you need
(so that it lines up with other raster data you are using).

To have this kind of control, provide an existing SpatRaster with the geometry you desire. That is generally the best
way to project raster. By providing an existing SpatRaster, such that your newly projected data perfectly aligns with it.
In this example we do not have an existing SpatRaster object, so we create from the result obtained above.

x <- rast(pr1)
Set the cell size
res(x) <- 200000

Now project, and note the change in the coordinates.

pr3 <- terra::project(r, x)
(continues on next page)

26 Chapter 6. Coordinate Reference Systems

Spatial Data in R

(continued from previous page)

pr3
class : SpatRaster
dimensions : 10, 14, 1 (nrow, ncol, nlyr)
resolution : 2e+05, 2e+05 (x, y)
extent : -9577685, -6777685, 4283463, 6283463 (xmin, xmax, ymin, ymax)
coord. ref. : +proj=robin +lon_0=0 +x_0=0 +y_0=0 +datum=WGS84 +units=m +no_defs
source(s) : memory
name : lyr.1
min value : 111.1541
max value : 1523.5796
plot(pr3)

For raster based analysis it is often important to use equal area projections, particularly when large areas are analyzed.
This will assure that the grid cells are all of same size, and therefore comparable to each other, especially when count
data are used.

6.5. Transforming raster data 27

Spatial Data in R

28 Chapter 6. Coordinate Reference Systems

CHAPTER

SEVEN

VECTOR DATA MANIPULATION

This chapter illustrates some ways in which we can manipulate vector data. We start with an example SpatVector that
we read from a shapefile.

library(terra)
terra 1.7.62
f <- system.file("ex/lux.shp", package="terra")
p <- vect(f)
p
class : SpatVector
geometry : polygons
dimensions : 12, 6 (geometries, attributes)
extent : 5.74414, 6.528252, 49.44781, 50.18162 (xmin, xmax, ymin, ymax)
source : lux.shp
coord. ref. : lon/lat WGS 84 (EPSG:4326)
names : ID_1 NAME_1 ID_2 NAME_2 AREA POP
type : <num> <chr> <num> <chr> <num> <int>
values : 1 Diekirch 1 Clervaux 312 18081
1 Diekirch 2 Diekirch 218 32543
1 Diekirch 3 Redange 259 18664

We can plot these data in many ways. For example:

plot(p, "NAME_2")

29

Spatial Data in R

7.1 Basics

7.1.1 Geometry and attributes

To extract the attributes (data.frame) from a SpatVector, use:

d <- as.data.frame(p)
head(d)
ID_1 NAME_1 ID_2 NAME_2 AREA POP
1 1 Diekirch 1 Clervaux 312 18081
2 1 Diekirch 2 Diekirch 218 32543
3 1 Diekirch 3 Redange 259 18664
4 1 Diekirch 4 Vianden 76 5163
5 1 Diekirch 5 Wiltz 263 16735

(continues on next page)

30 Chapter 7. Vector data manipulation

Spatial Data in R

(continued from previous page)

6 2 Grevenmacher 6 Echternach 188 18899

You can also extract the geometry as a a matrix (this is rarely needed).

g <- geom(p)
head(g)
geom part x y hole
[1,] 1 1 6.026519 50.17767 0
[2,] 1 1 6.031361 50.16563 0
[3,] 1 1 6.035646 50.16410 0
[4,] 1 1 6.042747 50.16157 0
[5,] 1 1 6.043894 50.16116 0
[6,] 1 1 6.048243 50.16008 0

Or as “well-known-text”

g <- geom(p, wkt=TRUE)
substr(g, 1, 50)
[1] "POLYGON ((6.026519 50.17767, 6.031361 50.165627, 6"
[2] "POLYGON ((6.178368 49.876823, 6.185479 49.870525, "
[3] "POLYGON ((5.881378 49.870148, 5.881672 49.868866, "
[4] "POLYGON ((6.131309 49.972565, 6.134291 49.972382, "
[5] "POLYGON ((5.977929 50.026016, 5.982312 50.022949, "
[6] "POLYGON ((6.385532 49.837029, 6.3886 49.833683, 6."
[7] "POLYGON ((6.316665 49.623375, 6.31835 49.623157, 6"
[8] "POLYGON ((6.425158 49.731644, 6.42657 49.73082, 6."
[9] "POLYGON ((5.998312 49.699924, 5.998632 49.698559, "
[10] "POLYGON ((6.039474 49.448261, 6.036906 49.448696, "
[11] "POLYGON ((6.155963 49.685047, 6.159284 49.685036, "
[12] "POLYGON ((6.067982 49.828465, 6.071922 49.825478, "

7.1.2 Variables

You can extract a variable as you would do with a data.frame.

p$NAME_2
[1] "Clervaux" "Diekirch" "Redange" "Vianden"
[5] "Wiltz" "Echternach" "Remich" "Grevenmacher"
[9] "Capellen" "Esch-sur-Alzette" "Luxembourg" "Mersch"

To sub-set a SpatVector to one or more variables you can use the notation below. Note how this is different from the
above example. Above a vector of values is returned. With the approach below you get a new SpatVector with only
one variable.

p[, "NAME_2"]
class : SpatVector
geometry : polygons
dimensions : 12, 1 (geometries, attributes)
extent : 5.74414, 6.528252, 49.44781, 50.18162 (xmin, xmax, ymin, ymax)
source : lux.shp
coord. ref. : lon/lat WGS 84 (EPSG:4326)

(continues on next page)

7.1. Basics 31

Spatial Data in R

(continued from previous page)

names : NAME_2
type : <chr>
values : Clervaux
Diekirch
Redange

You can add a new variable to a SpatVector just as if it were a data.frame.

set.seed(0)
p$lets <- sample(letters, nrow(p))
p
class : SpatVector
geometry : polygons
dimensions : 12, 7 (geometries, attributes)
extent : 5.74414, 6.528252, 49.44781, 50.18162 (xmin, xmax, ymin, ymax)
source : lux.shp
coord. ref. : lon/lat WGS 84 (EPSG:4326)
names : ID_1 NAME_1 ID_2 NAME_2 AREA POP lets
type : <num> <chr> <num> <chr> <num> <int> <chr>
values : 1 Diekirch 1 Clervaux 312 18081 n
1 Diekirch 2 Diekirch 218 32543 y
1 Diekirch 3 Redange 259 18664 d

Note that to get the number of geometries of SpatVector p, you can use nrow(p), or size(p). You can also do
perim(p) to get the “length” of the spatial objects (zero for points, the length of the lines, or the perimeter of the
polygons).

perim(p)
[1] 117100.12 93477.28 84502.45 44919.14 85032.61 74708.05 57991.42
[8] 81203.93 74443.82 95564.74 80618.76 70810.67

Assigning a new value to an existing variable.

p$lets <- sample(LETTERS, nrow(p))
head(p)
ID_1 NAME_1 ID_2 NAME_2 AREA POP lets
1 1 Diekirch 1 Clervaux 312 18081 J
2 1 Diekirch 2 Diekirch 218 32543 V
3 1 Diekirch 3 Redange 259 18664 N
4 1 Diekirch 4 Vianden 76 5163 Z
5 1 Diekirch 5 Wiltz 263 16735 G
6 2 Grevenmacher 6 Echternach 188 18899 I

To get rid of a variable, set it to NULL.

p$lets <- NULL

32 Chapter 7. Vector data manipulation

Spatial Data in R

7.1.3 Merge

You can assign an attributes table (data.frame) to a SpatVector with values<-. To add attributes to a SpatVector that
already has attributes use merge (or cbind if you know the order of the records is the same).

dfr <- data.frame(District=p$NAME_1, Canton=p$NAME_2, Value=round(runif(length(p), 100,␣
→˓1000)))

dfr <- dfr[order(dfr$Canton),]
pm <- merge(p, dfr, by.x=c('NAME_1', 'NAME_2'), by.y=c('District', 'Canton'))
pm
class : SpatVector
geometry : polygons
dimensions : 12, 7 (geometries, attributes)
extent : 5.74414, 6.528252, 49.44781, 50.18162 (xmin, xmax, ymin, ymax)
coord. ref. : lon/lat WGS 84 (EPSG:4326)
names : NAME_1 NAME_2 ID_1 ID_2 AREA POP Value
type : <chr> <chr> <num> <num> <num> <int> <num>
values : Diekirch Clervaux 1 1 312 18081 406
Diekirch Diekirch 1 2 218 32543 534
Diekirch Redange 1 3 259 18664 640
head(pm)
NAME_1 NAME_2 ID_1 ID_2 AREA POP Value
1 Diekirch Clervaux 1 1 312 18081 406
2 Diekirch Diekirch 1 2 218 32543 534
3 Diekirch Redange 1 3 259 18664 640
4 Diekirch Vianden 1 4 76 5163 544
5 Diekirch Wiltz 1 5 263 16735 268
6 Grevenmacher Echternach 2 6 188 18899 845

Note the new variable Value added to pm

7.1.4 Records

Selecting rows (records).

i <- which(p$NAME_1 == 'Grevenmacher')
g <- p[i,]
g
class : SpatVector
geometry : polygons
dimensions : 3, 6 (geometries, attributes)
extent : 6.169137, 6.528252, 49.46498, 49.85403 (xmin, xmax, ymin, ymax)
coord. ref. : lon/lat WGS 84 (EPSG:4326)
names : ID_1 NAME_1 ID_2 NAME_2 AREA POP
type : <num> <chr> <num> <chr> <num> <int>
values : 2 Grevenmacher 6 Echternach 188 18899
2 Grevenmacher 7 Remich 129 22366
2 Grevenmacher 12 Grevenmacher 210 29828

It is also possible to interactively select and query records by clicking on a plotted dataset. That is difficult to show
here. See ?sel for interactively selecting geometries and ?click to identify attributes by clicking on a plot (map).

7.1. Basics 33

Spatial Data in R

7.2 Append and aggregate

7.3 Append

More example data. Object z consists of four polygons; z2 is one of these four polygons.

z <- rast(p)
dim(z) <- c(2,2)
values(z) <- 1:4
names(z) <- 'Zone'
coerce SpatRaster to SpatVector polygons
z <- as.polygons(z)
z
class : SpatVector
geometry : polygons
dimensions : 4, 1 (geometries, attributes)
extent : 5.74414, 6.528252, 49.44781, 50.18162 (xmin, xmax, ymin, ymax)
coord. ref. : lon/lat WGS 84 (EPSG:4326)
names : Zone
type : <int>
values : 1
2
3
z2 <- z[2,]
plot(p)
plot(z, add=TRUE, border='blue', lwd=5)
plot(z2, add=TRUE, border='red', lwd=2, col='red')

34 Chapter 7. Vector data manipulation

Spatial Data in R

To append SpatVector objects of the same (vector) type you can use c

b <- rbind(p, z)
with older versions
b <- c(p, z)
head(b)
ID_1 NAME_1 ID_2 NAME_2 AREA POP Zone
1 1 Diekirch 1 Clervaux 312 18081 NA
2 1 Diekirch 2 Diekirch 218 32543 NA
3 1 Diekirch 3 Redange 259 18664 NA
4 1 Diekirch 4 Vianden 76 5163 NA
5 1 Diekirch 5 Wiltz 263 16735 NA
6 2 Grevenmacher 6 Echternach 188 18899 NA
tail(b)
ID_1 NAME_1 ID_2 NAME_2 AREA POP Zone
11 3 Luxembourg 10 Luxembourg 237 182607 NA
12 3 Luxembourg 11 Mersch 233 32112 NA

(continues on next page)

7.3. Append 35

Spatial Data in R

(continued from previous page)

13 NaN <NA> NaN <NA> NaN NA 1
14 NaN <NA> NaN <NA> NaN NA 2
15 NaN <NA> NaN <NA> NaN NA 3
16 NaN <NA> NaN <NA> NaN NA 4

Note how rbind (c for older versions of terra) allows you to append SpatVect objects with different attribute names,
unlike the standard rbind for data.frames.

7.4 Aggregate

It is common to aggregate (“dissolve”) polygons that have the same value for an attribute of interest. In this case, if we
do not care about the second level subdivisions of Luxembourg, we could aggregate by the first level subdivisions.

pa <- aggregate(p, by='NAME_1')
za <- aggregate(z)
plot(za, col='light gray', border='light gray', lwd=5)
plot(pa, add=TRUE, col=rainbow(3), lwd=3, border='white')

36 Chapter 7. Vector data manipulation

Spatial Data in R

It is also possible to aggregate polygons without dissolving the borders.

zag <- aggregate(z, dissolve=FALSE)
zag
class : SpatVector
geometry : polygons
dimensions : 1, 0 (geometries, attributes)
extent : 5.74414, 6.528252, 49.44781, 50.18162 (xmin, xmax, ymin, ymax)
coord. ref. : lon/lat WGS 84 (EPSG:4326)
plot(zag, col="light gray")

7.4. Aggregate 37

Spatial Data in R

This is a structure that is similar to what you may get for an archipelago: multiple polygons represented as one entity
(one row). Use disagg to split these up into their parts.

zd <- disagg(zag)
zd
class : SpatVector
geometry : polygons
dimensions : 4, 0 (geometries, attributes)
extent : 5.74414, 6.528252, 49.44781, 50.18162 (xmin, xmax, ymin, ymax)
coord. ref. : lon/lat WGS 84 (EPSG:4326)

38 Chapter 7. Vector data manipulation

Spatial Data in R

7.5 Overlay

There are many different ways to “overlay” vector data. Here are some examples:

7.5.1 Erase

Erase a part of a SpatVector

e <- erase(p, z2)
plot(e)

7.5. Overlay 39

Spatial Data in R

7.5.2 Intersect

Intersect SpatVectors

i <- intersect(p, z2)
plot(i)

You can also intersect or crop with a SpatExtent (rectangle). The difference between intersect and crop is that
with crop the geometry of the second argument is not added to the output.

e <- ext(6, 6.4, 49.7, 50)
pe <- crop(p, e)
plot(p)
plot(e, add=TRUE, lwd=3, col="red")
plot(pe, col='light blue', add=TRUE)
plot(e, add=TRUE, lwd=3, border="blue")

40 Chapter 7. Vector data manipulation

Spatial Data in R

7.5.3 Union

Get the union of two SpatVectors.

u <- union(p, z)
u
class : SpatVector
geometry : polygons
dimensions : 28, 7 (geometries, attributes)
extent : 5.74414, 6.528252, 49.44781, 50.18162 (xmin, xmax, ymin, ymax)
coord. ref. : lon/lat WGS 84 (EPSG:4326)
names : Zone ID_1 NAME_1 ID_2 NAME_2 AREA POP
type : <int> <num> <chr> <num> <chr> <num> <int>
values : 1 NaN NA NaN NA NaN NA
2 NaN NA NaN NA NaN NA
3 NaN NA NaN NA NaN NA

7.5. Overlay 41

Spatial Data in R

Note that there are many more polygons now. One for each unique combination of polygons (and attributes in this
case).

set.seed(5)
plot(u, col=sample(rainbow(length(u))))

7.5.4 Cover

cover is a combination of intersect and union. intersect returns new (intersected) geometries with the attributes
of both input datasets. union appends the geometries and attributes of the input. cover returns the intersection and
appends the other geometries and attributes of both datasets.

cov <- cover(p, z[c(1,4),])
cov
class : SpatVector

(continues on next page)

42 Chapter 7. Vector data manipulation

Spatial Data in R

(continued from previous page)

geometry : polygons
dimensions : 11, 7 (geometries, attributes)
extent : 5.74414, 6.528252, 49.44781, 50.18162 (xmin, xmax, ymin, ymax)
coord. ref. : lon/lat WGS 84 (EPSG:4326)
names : ID_1 NAME_1 ID_2 NAME_2 AREA POP Zone
type : <num> <chr> <num> <chr> <num> <int> <int>
values : 1 Diekirch 1 Clervaux 312 18081 NA
1 Diekirch 2 Diekirch 218 32543 NA
1 Diekirch 3 Redange 259 18664 NA
plot(cov)

7.5. Overlay 43

Spatial Data in R

7.5.5 Difference

The symmetrical difference of two SpatVectors

dif <- symdif(z,p)
plot(dif, col=rainbow(length(dif)))

dif
class : SpatVector
geometry : polygons
dimensions : 4, 1 (geometries, attributes)
extent : 5.74414, 6.528252, 49.44781, 50.18162 (xmin, xmax, ymin, ymax)
coord. ref. : lon/lat WGS 84 (EPSG:4326)
names : Zone
type : <int>
values : 1

(continues on next page)

44 Chapter 7. Vector data manipulation

Spatial Data in R

(continued from previous page)

2
3

7.6 Spatial queries

We can query polygons with points (“point-in-polygon query”).

pts <- matrix(c(6, 6.1, 5.9, 5.7, 6.4, 50, 49.9, 49.8, 49.7, 49.5), ncol=2)
spts <- vect(pts, crs=crs(p))
plot(z, col='light blue', lwd=2)
points(spts, col='light gray', pch=20, cex=6)
text(spts, 1:nrow(pts), col='red', font=2, cex=1.5)
lines(p, col='blue', lwd=2)

7.6. Spatial queries 45

Spatial Data in R

extract is used for queries between SpatVector and SpatRaster objects, and also for queries between SpatVectors.

extract(spts, p)
id.y id.x
[1,] 1 NaN
[2,] 2 NaN
[3,] 3 NaN
[4,] 4 NaN
[5,] 5 NaN
[6,] 6 NaN
[7,] 7 NaN
[8,] 8 NaN
[9,] 9 NaN
[10,] 10 NaN
[11,] 11 NaN
[12,] 12 NaN
extract(spts, z)
id.y id.x
[1,] 1 NaN
[2,] 2 NaN
[3,] 3 NaN
[4,] 4 NaN

46 Chapter 7. Vector data manipulation

CHAPTER

EIGHT

RASTER DATA MANIPULATION

8.1 Introduction

In this chapter general aspects of the design of the terra package are discussed, notably the structure of the main
classes, and what they represent. The use of the package is illustrated in subsequent sections. terra has a large
number of functions, not all of them are discussed here, and those that are discussed are mentioned only briefly. See
the help files of the package for more information on individual functions and help("terra-package") for an index
of functions by topic.

8.2 Creating SpatRaster objects

A SpatRaster can easily be created from scratch using the function rast. The default settings will create a global
raster data structure with a longitude/latitude coordinate reference system and 1 by 1 degree cells. You can change
these settings by providing additional arguments such as xmin, nrow, ncol, and/or crs, to the function. You can also
change these parameters after creating the object. If you set the projection, this is only to properly define it, not to
change it. To transform a SpatRaster to another coordinate reference system (projection) you can use the project
function.

Here is an example of creating and changing a SpatRaster object ‘r’ from scratch.

library(terra)
terra 1.7.62
SpatRaster with the default parameters
x <- rast()
x
class : SpatRaster
dimensions : 180, 360, 1 (nrow, ncol, nlyr)
resolution : 1, 1 (x, y)
extent : -180, 180, -90, 90 (xmin, xmax, ymin, ymax)
coord. ref. : lon/lat WGS 84 (CRS84) (OGC:CRS84)

With some other parameters

x <- rast(ncol=36, nrow=18, xmin=-1000, xmax=1000, ymin=-100, ymax=900)

These parameters can be changed. Resolution:

res(x)
[1] 55.55556 55.55556
res(x) <- 100

(continues on next page)

47

Spatial Data in R

(continued from previous page)

res(x)
[1] 100 100

Change the number of columns (this affects the resolution).

ncol(x)
[1] 20
ncol(x) <- 18
ncol(x)
[1] 18
res(x)
[1] 111.1111 100.0000

Set the coordinate reference system (CRS) (i.e., define the projection).

crs(x) <- "+proj=utm +zone=48 +datum=WGS84"
x
class : SpatRaster
dimensions : 10, 18, 1 (nrow, ncol, nlyr)
resolution : 111.1111, 100 (x, y)
extent : -1000, 1000, -100, 900 (xmin, xmax, ymin, ymax)
coord. ref. : +proj=utm +zone=48 +datum=WGS84 +units=m +no_defs

The object x created in the examples above only consists of the raster geometry, that is, we have defined the number of
rows and columns, and where the raster is located in geographic space, but there are no cell-values associated with it.
Setting and accessing values is illustrated below.

First another example empty raster geometry.

r <- rast(ncol=10, nrow=10)
ncell(r)
[1] 100
hasValues(r)
[1] FALSE

Use the ‘values’ function.

values(r) <- 1:ncell(r)

Another example.

set.seed(0)
values(r) <- runif(ncell(r))

hasValues(r)
[1] TRUE
sources(r)
[1] ""
values(r)[1:10]
[1] 0.8966972 0.2655087 0.3721239 0.5728534 0.9082078 0.2016819 0.8983897
[8] 0.9446753 0.6607978 0.6291140
plot(r, main='Raster with 100 cells')

48 Chapter 8. Raster data manipulation

Spatial Data in R

In some cases, for example when you change the number of columns or rows, you will lose the values associated with
the SpatRaster if there were any (or the link to a file if there was one). The same applies, in most cases, if you change
the resolution directly (as this can affect the number of rows or columns). Values are not lost when changing the extent
as this change adjusts the resolution, but does not change the number of rows or columns.

hasValues(r)
[1] TRUE
res(r)
[1] 36 18
dim(r)
[1] 10 10 1
extent
ext(r)
SpatExtent : -180, 180, -90, 90 (xmin, xmax, ymin, ymax)

Now change the maximum x coordinate of the extent (bounding box) of the SpatRaster.

xmax(r) <- 0
hasValues(r)
[1] TRUE
res(r)
[1] 18 18
dim(r)
[1] 10 10 1

And the number of columns (the values disappear)

ncol(r) <- 6
hasValues(r)
[1] FALSE
res(r)
[1] 30 18
dim(r)
[1] 10 6 1
xmax(r)
[1] 0

8.2. Creating SpatRaster objects 49

Spatial Data in R

While we can create a SpatRaster from scratch, it is more common to do so from a file. The terra package can use
raster files in several formats, including GeoTiff, ESRI, ENVI, and ERDAS.

A notable feature of the terra package is that it can work with raster datasets that are stored on disk and are too large
to be loaded into memory (RAM). The package can work with large files because the objects it creates from these files
only contain information about the structure of the data, such as the number of rows and columns, the spatial extent,
and the filename, but it does not attempt to read all the cell values in memory. In computations with these objects, data
is processed in chunks. If no output filename is specified to a function, and the output raster is too large to keep in
memory, the results are written to a temporary file.

Below we first we get the name of an example raster file that is installed with the “terra” package. Do not use this
system.file construction for your own files. Just type the file name as you would do for any other file, but don’t
forget to use forward slashes as path separators.

filename <- system.file("ex/elev.tif", package="terra")
basename(filename)
[1] "elev.tif"

r <- rast(filename)
sources(r)
[1] "C:/soft/R/R-4.3.2/library/terra/ex/elev.tif"
hasValues(r)
[1] TRUE
plot(r, main="SpatRaster from file")

50 Chapter 8. Raster data manipulation

Spatial Data in R

Multi-layer objects can be created in memory or from files.

Create three identical SpatRaster objects

r1 <- r2 <- r3 <- rast(nrow=10, ncol=10)
Assign random cell values
values(r1) <- runif(ncell(r1))
values(r2) <- runif(ncell(r2))
values(r3) <- runif(ncell(r3))

Combine three SpatRasters:

s <- c(r1, r2, r3)
s
class : SpatRaster
dimensions : 10, 10, 3 (nrow, ncol, nlyr)
resolution : 36, 18 (x, y)

(continues on next page)

8.2. Creating SpatRaster objects 51

Spatial Data in R

(continued from previous page)

extent : -180, 180, -90, 90 (xmin, xmax, ymin, ymax)
coord. ref. : lon/lat WGS 84 (CRS84) (OGC:CRS84)
source(s) : memory
names : lyr.1, lyr.1, lyr.1
min values : 0.01307758, 0.02778712, 0.06380247
max values : 0.99268406, 0.98156346, 0.99607737
nlyr(s)
[1] 3

You can also create a multilayer object from a file.

filename <- system.file("ex/logo.tif", package="terra")
basename(filename)
[1] "logo.tif"
b <- rast(filename)
b
class : SpatRaster
dimensions : 77, 101, 3 (nrow, ncol, nlyr)
resolution : 1, 1 (x, y)
extent : 0, 101, 0, 77 (xmin, xmax, ymin, ymax)
coord. ref. : Cartesian (Meter)
source : logo.tif
colors RGB : 1, 2, 3
names : red, green, blue
min values : 0, 0, 0
max values : 255, 255, 255
nlyr(b)
[1] 3

Extract a single layer (the second one on this case)

r <- b[[2]]

8.3 Raster algebra

Many generic functions that allow for simple and elegant raster algebra have been implemented for Raster objects,
including the normal algebraic operators such as +, -, *, /, logical operators such as >, >=, <, ==, ! and functions like
abs, round, ceiling, floor, trunc, sqrt, log, log10, exp, cos, sin, atan, tan, max, min, range, prod, sum,
any, all. In these functions you can mix raster objects with numbers, as long as the first argument is a raster
object.

Create an empty SpatRaster and assign values to cells.

r <- rast(ncol=10, nrow=10)
values(r) <- 1:ncell(r)

Now some raster algebra.

s <- r + 10
s <- sqrt(s)
s <- s * r + 5

(continues on next page)

52 Chapter 8. Raster data manipulation

Spatial Data in R

(continued from previous page)

values(r) <- runif(ncell(r))
r <- round(r)
r <- r == 1

You can also use replacement functions.

#Not yet implemented
s[r] <- -0.5
s[!r] <- 5
s[s == 5] <- 15

If you use multiple SpatRaster objects (in functions where this is relevant, such as range), these must have the same
resolution and origin. The origin of a Raster object is the point closest to (0, 0) that you could get if you moved from
a corner of a SpatRaster toward that point in steps of the x and y resolution. Normally these objects would also have
the same extent, but if they do not, the returned object covers the spatial intersection of the objects used.

When you use multiple multi-layer objects with different numbers or layers, the ‘shorter’ objects are ‘recycled’. For
example, if you multiply a 4-layer object (a1, a2, a3, a4) with a 2-layer object (b1, b2), the result is a four-layer object
(a1*b1, a2*b2, a3*b1, a3*b2).

r <- rast(ncol=5, nrow=5)
values(r) <- 1
s <- c(r, r+1)
q <- c(r, r+2, r+4, r+6)
x <- r + s + q
x
class : SpatRaster
dimensions : 5, 5, 4 (nrow, ncol, nlyr)
resolution : 72, 36 (x, y)
extent : -180, 180, -90, 90 (xmin, xmax, ymin, ymax)
coord. ref. : lon/lat WGS 84 (CRS84) (OGC:CRS84)
source(s) : memory
names : lyr1, lyr2, lyr3, lyr4
min values : 3, 6, 7, 10
max values : 3, 6, 7, 10

Summary functions (min, max, mean, prod, sum, median, cv, range, any, all) always return a SpatRaster object.
Perhaps this is not obvious when using functions like min, sum or mean.

a <- mean(r,s,10)
b <- sum(r,s)
st <- c(r, s, a, b)
sst <- sum(st)
sst
class : SpatRaster
dimensions : 5, 5, 1 (nrow, ncol, nlyr)
resolution : 72, 36 (x, y)
extent : -180, 180, -90, 90 (xmin, xmax, ymin, ymax)
coord. ref. : lon/lat WGS 84 (CRS84) (OGC:CRS84)
source(s) : memory
name : sum
min value : 17.33333
max value : 17.33333

8.3. Raster algebra 53

Spatial Data in R

Use global if you want a single number summarizing the cell values of each layer.

global(st, 'sum')
sum
lyr.1 25.0000
lyr.1.1 25.0000
lyr.1.2 50.0000
lyr1 100.0000
lyr2 108.3333
lyr1.1 50.0000
lyr2.1 75.0000
global(sst, 'sum')
sum
sum 433.3333

8.4 ‘High-level’ functions

Several ‘high level’ functions have been implemented for SpatRaster objects. ‘High level’ functions refer to functions
that you would normally find in a computer program that supports the analysis of raster data. Here we briefly discuss
some of these functions. All these functions work for raster datasets that cannot be loaded into memory. See the help
files for more detailed descriptions of each function.

The high-level functions have some arguments in common. The first argument is typically a SpatRaster ‘x’ or ‘ob-
ject’. It is followed by one or more arguments specific to the function (either additional SpatRaster objects or other
arguments), followed by filename and ... arguments.

The default filename is an empty character "". If you do not specify a filename, the default action for the function is to
return a raster object that only exists in memory. However, if the function deems that the raster object to be created
would be too large to hold in memory, it is written to a temporary file instead.

The ... argument allows for setting additional arguments that are relevant when writing values to a file: the file format,
datatype (e.g. integer or real values), and a to indicate whether existing files should be overwritten.

8.4.1 Modifying a SpatRaster object

There are several functions that deal with modifying the spatial extent of SpatRaster objects. The crop function lets
you take a geographic subset of a larger raster object. You can crop a SpatRaster by providing an extent object
or another spatial object from which an extent can be extracted (objects from classes deriving from Raster and from
Spatial in the sp package). An easy way to get an extent object is to plot a SpatRaster and then use drawExtent
to visually determine the new extent (bounding box) to provide to the crop function.

trim crops a SpatRaster by removing the outer rows and columns that only contain NA values. In contrast, extend
adds new rows and/or columns with NA values. The purpose of this could be to create a new SpatRaster with the
same Extent of another, larger, SpatRaster such that they can be used together in other functions.

The merge function lets you merge 2 or more SpatRaster objects into a single new object. The input objects must have
the same resolution and origin (such that their cells neatly fit into a single larger raster). If this is not the case you can
first adjust one of the SpatRaster objects with aggregate/disagg or resample.

aggregate and disagg allow for changing the resolution (cell size) of a SpatRaster object. In the case of
aggregate, you need to specify a function determining what to do with the grouped cell values mean. It is possi-
ble to specify different (dis)aggregation factors in the x and y direction. aggregate and disagg are the best functions
when adjusting cells size only, with an integer step (e.g. each side 2 times smaller or larger), but in some cases that is
not possible.

54 Chapter 8. Raster data manipulation

Spatial Data in R

For example, you may need nearly the same cell size, while shifting the cell centers. In those cases, the resample
function can be used. It can do either nearest neighbor assignments (for categorical data) or bilinear interpolation
(for numerical data). Simple linear shifts of a Raster object can be accomplished with the shift function or with the
extent function.

With the warp function you can transform values of SpatRaster object to a new object with a different coordinate
reference system.

Here are some simple examples.

Aggregate and disaggregate.

r <- rast()
values(r) <- 1:ncell(r)
ra <- aggregate(r, 20)
rd <- disagg(ra, 20)

Crop and merge example.

r1 <- crop(r, ext(-50,0,0,30))
r2 <- crop(r, ext(-10,50,-20, 10))
m <- merge(r1, r2, filename="test.tif", overwrite=TRUE)
plot(m)

flip lets you flip the data (reverse order) in horizontal or vertical direction – typically to correct for a ‘communication
problem’ between different R packages or a misinterpreted file. rotate lets you rotate longitude/latitude rasters that
have longitudes from 0 to 360 degrees (often used by climatologists) to the standard -180 to 180 degrees system. With
t you can rotate a SpatRaster object 90 degrees.

8.4. ‘High-level’ functions 55

Spatial Data in R

8.4.2 Overlay

app (short for “apply”) allows you to do a computation for a single SpatRaster object by providing a function, e.g.
sum.

The lapp (layer-apply) function can be used as an alternative to the raster algebra discussed above.

8.4.3 Classify

You can use classify to replace ranges of values with single values, or to substitute (replace) single values with other
values.

r <- rast(ncol=3, nrow=2)
values(r) <- 1:ncell(r)
values(r)
lyr.1
[1,] 1
[2,] 2
[3,] 3
[4,] 4
[5,] 5
[6,] 6

Set all values above 4 to NA

s <- app(r, fun=function(x){ x[x < 4] <- NA; return(x)})
as.matrix(s)
lyr.1
[1,] NA
[2,] NA
[3,] NA
[4,] 4
[5,] 5
[6,] 6

Divide the first raster with two times the square root of the second raster and add five.

rs <- c(r, s)
w <- lapp(rs, fun=function(x, y){ x / (2 * sqrt(y)) + 5 })
as.matrix(w)
lyr1
[1,] NA
[2,] NA
[3,] NA
[4,] 6.000000
[5,] 6.118034
[6,] 6.224745

Remove from r all values that are NA in w.

u <- mask(r, w)
as.matrix(u)
lyr.1
[1,] NA

(continues on next page)

56 Chapter 8. Raster data manipulation

Spatial Data in R

(continued from previous page)

[2,] NA
[3,] NA
[4,] 4
[5,] 5
[6,] 6

Identify the cell values in u that are the same as in s.

v <- u==s
as.matrix(v)
lyr.1
[1,] NA
[2,] NA
[3,] NA
[4,] TRUE
[5,] TRUE
[6,] TRUE

Replace NA values in w with values of r.

cvr <- cover(w, r)
as.matrix(w)
lyr1
[1,] NA
[2,] NA
[3,] NA
[4,] 6.000000
[5,] 6.118034
[6,] 6.224745

Change value between 0 and 2 to 1, etc.

x <- classify(w, rbind(c(0,2,1), c(2,5,2), c(4,10,3)))
as.matrix(x)
lyr1
[1,] NaN
[2,] NaN
[3,] NaN
[4,] 3
[5,] 3
[6,] 3

Substitute 2 with 40 and 3 with 50.

y <- classify(x, cbind(id=c(2,3), v=c(40,50)))
as.matrix(y)
lyr1
[1,] NaN
[2,] NaN
[3,] NaN
[4,] 50
[5,] 50
[6,] 50

8.4. ‘High-level’ functions 57

Spatial Data in R

8.4.4 Focal methods

The focal methods computate new values based on the values in a neighborhood of cells around a focal cell, and
putting the result in the focal cell of the output SpatRaster. The neighborhood is a user-defined matrix of weights and
could approximate any shape by giving some cells zero weight. It is possible to only computes new values for cells that
are NA in the input SpatRaster.

8.4.5 Distance

There are a number of distance related functions. For example, you can compute the shortest distance to cells that
are not NA, the shortest distance to any point in a set of points, or the distance when following grid cells that can be
traversed (e.g. excluding water bodies). direction computes the direction toward (or from) the nearest cell that is
not NA. adjacency determines which cells are adjacent to other cells. See the gdistance package for more advanced
distance calculations (cost distance, resistance distance).

8.4.6 Spatial configuration

patches identifies groups of cells that are connected. boundaries identifies edges, that is, transitions between cell
values. area computes the size of each grid cell (for unprojected rasters), this may be useful to, e.g. compute the area
covered by a certain class on a longitude/latitude raster.

r <- rast(nrow=45, ncol=90)
values(r) <- round(runif(ncell(r))*3)
a <- cellSize(r)
zonal(a, r, "sum")
lyr.1 area
1 0 9.391452e+13
2 1 1.694339e+14
3 2 1.586069e+14
4 3 8.811029e+13

8.4.7 Predictions

The terra package has two functions to make model predictions to (potentially very large) rasters. predict takes a
multilayer raster and a fitted model as arguments. Fitted models can be of various classes, including glm, gam, and
RandomForest. The function interpolate is similar but is for models that use coordinates as predictor variables, for
example in Kriging and spline interpolation.

8.4.8 Vector to raster conversion

The terra package supports point, line, and polygon to raster conversion with the rasterize function. For vector type
data (points, lines, polygons), SpatVector objects are used; but points can also be represented by a two-column matrix
(x and y).

Point to raster conversion is often done with the purpose to analyze the point data. For example to count the number
of distinct species (represented by point observations) that occur in each raster cell. rasterize takes a SpatRaster
object to set the spatial extent and resolution, and a function to determine how to summarize the points (or an attribute
of each point) by cell.

Polygon to raster conversion is typically done to create a SpatRaster that can act as a mask, i.e. to set to NA a set of
cells of a SpatRaster object, or to summarize values on a raster by zone. For example a country polygon is transferred

58 Chapter 8. Raster data manipulation

Spatial Data in R

to a raster that is then used to set all the cells outside that country to NA; whereas polygons representing administrative
regions such as states can be transferred to a raster to summarize raster values by region.

It is also possible to convert the values of a SpatRaster to points or polygons, using as.points and as.polygons.
Both functions only return values for cells that are not NA.

8.5 Summarizing functions

When used with a SpatRaster object as first argument, normal summary statistics functions such as min, max and
mean return a SpatRaster. You can use global if, instead, you want to obtain a summary for all cells of a single
SpatRaster object. You can use freq to make a frequency table, or to count the number of cells with a specified
value. Use zonal to summarize a SpatRaster object using zones (areas with the same integer number) defined in a
SpatRaster and crosstab to cross-tabulate two SpatRaster objects.

r <- rast(ncol=36, nrow=18)
values(r) <- runif(ncell(r))
global(r, mean)
mean
lyr.1 0.5179682

Zonal stats, below r has the cells we want to summarize, s defines the zones, and the last argument is the function to
summarize the values of r for each zone in s.

s <- r
values(s) <- round(runif(ncell(r)) * 5)
zonal(r, s, 'mean')
lyr.1 lyr.1.1
1 0 0.5144431
2 1 0.5480089
3 2 0.5249257
4 3 0.5194031
5 4 0.4853966
6 5 0.5218401

Count cells

freq(s)
layer value count
1 1 0 54
2 1 1 102
3 1 2 139
4 1 3 148
5 1 4 133
6 1 5 72
freq(s, value=3)
layer value count
1 1 3 148

Cross-tabulate

ctb <- crosstab(c(r*3, s))
head(ctb)
lyr.1.1

(continues on next page)

8.5. Summarizing functions 59

Spatial Data in R

(continued from previous page)

lyr.1 0 1 2 3 4 5
0 8 13 21 16 24 10
1 17 31 42 56 45 24
2 19 31 52 54 37 27
3 10 27 24 22 27 11

8.6 Helper functions

The cell number is an important concept in the terra package. Raster data can be thought of as a matrix, but in a
SpatRaster it is more commonly treated as a vector. Cells are numbered from the upper left cell to the upper right
cell and then continuing on the left side of the next row, and so on until the last cell at the lower right side of the raster.
There are several helper functions to determine the column or row number from a cell and vice versa, and to determine
the cell number for x, y coordinates and vice versa.

r <- rast(ncol=36, nrow=18)
ncol(r)
[1] 36
nrow(r)
[1] 18
ncell(r)
[1] 648
rowFromCell(r, 100)
[1] 3
colFromCell(r, 100)
[1] 28
cellFromRowCol(r,5,5)
[1] 149
xyFromCell(r, 100)
x y
[1,] 95 65
cellFromXY(r, cbind(0,0))
[1] 343
colFromX(r, 0)
[1] 19
rowFromY(r, 0)
[1] 10

8.7 Accessing cell values

Cell values can be accessed with several methods. Use values to get all values or a subset such as a single row or a
block (rectangle) of cell values.

r <- rast(system.file("ex/elev.tif", package="terra"))
v <- values(r)
v[3075:3080,]
[1] 324 288 342 313 311 291
values(r, row=33, nrow=1, col=35, ncol=6)
elevation

(continues on next page)

60 Chapter 8. Raster data manipulation

Spatial Data in R

(continued from previous page)

[1,] 324
[2,] 288
[3,] 342
[4,] 313
[5,] 311
[6,] 291

You can also read values using cell numbers or coordinates (xy) using the extract method.

cells <- cellFromRowCol(r, 33, 35:40)
cells
[1] 3075 3076 3077 3078 3079 3080
r[cells]
elevation
1 324
2 288
3 342
4 313
5 311
6 291
xy <- xyFromCell(r, cells)
xy
x y
[1,] 6.029167 49.92083
[2,] 6.037500 49.92083
[3,] 6.045833 49.92083
[4,] 6.054167 49.92083
[5,] 6.062500 49.92083
[6,] 6.070833 49.92083
extract(r, xy)
elevation
1 324
2 288
3 342
4 313
5 311
6 291

You can also extract values using SpatVector objects. The default approach for extracting raster values with poly-
gons is that a polygon has to cover the center of a cell, for the cell to be included. However, you can use argument
weights=TRUE in which case you get, apart from the cell values, the percentage of each cell that is covered by the
polygon, so that you can apply, e.g., a “50% area covered” threshold, or compute an area-weighted average.

In the case of lines, any cell that is crossed by a line is included. For lines and points, a cell that is only ‘touched’ is
included when it is below or to the right (or both) of the line segment/point (except for the bottom row and right-most
column).

In addition, you can use standard R indexing to access values, or to replace values (assign new values to cells) in a
SpatRaster object. If you replace a value in a SpatRaster object based on a file, the connection to that file is lost
(because it now is different from that file). Setting raster values for very large files will be very slow with this approach
as each time a new (temporary) file, with all the values, is written to disk. If you want to overwrite values in an existing
file, you can use update (with caution!)

8.7. Accessing cell values 61

Spatial Data in R

r[cells]
elevation
1 324
2 288
3 342
4 313
5 311
6 291
r[1:4]
elevation
1 NA
2 NA
3 NA
4 NA
sources(r)
[1] "C:/soft/R/R-4.3.2/library/terra/ex/elev.tif"
r[2:5] <- 10
r[1:4]
elevation
1 NA
2 10
3 10
4 10
sources(r)
[1] ""

Note that in the above examples values are retrieved using cell numbers. That is, a raster is represented as a (one-
dimensional) vector. Values can also be inspected using a (two-dimensional) matrix notation. As for R matrices, the
first index represents the row number, the second the column number.

r[1:3]
elevation
1 NA
2 10
3 10
r[1,1:3]
elevation
1 NA
2 10
3 10
r[1, 1:5]
elevation
1 NA
2 10
3 10
4 10
5 10
r[1:5, 2]
elevation
1 10
2 NA
3 NA
4 NA

(continues on next page)

62 Chapter 8. Raster data manipulation

Spatial Data in R

(continued from previous page)

5 NA
r[1:3,1:3]
elevation
1 NA
2 10
3 10
4 NA
5 NA
6 NA
7 NA
8 NA
9 NA

get a vector instead of a a matrix
r[1:3, 1:3, drop=TRUE]
elevation
1 NA
2 10
3 10
4 NA
5 NA
6 NA
7 NA
8 NA
9 NA

or a raster like matrix
as.matrix(r, wide=TRUE)[1:3, 1:4]
[,1] [,2] [,3] [,4]
[1,] NA 10 10 10
[2,] NA NA NA NA
[3,] NA NA NA NA

Accessing values through this type of indexing should be avoided inside functions as it is less efficient than accessing
values via functions like getValues.

8.8 Coercion to other classes

You can convert SpatRaster objects to Raster* objects defined in the raster package.

r <- rast(ncol=36, nrow=18)
values(r) <- runif(ncell(r))
library(raster)
Loading required package: sp
x <- raster(r)

8.8. Coercion to other classes 63

Spatial Data in R

64 Chapter 8. Raster data manipulation

CHAPTER

NINE

MAPS

You can make a map with plot(x), were x is a SpatRaster or a SpatVector. You can add additional spatial data
or text with functions such as points, lines, text

You can zoom in using zoom(x) and clicking on the map twice (to indicate where to zoom to). Or use sel(x) to save
a spatial subset to a new object. With click(x) it is possible to interactively query a SpatRaster by clicking once or
several times on a map plot.

9.1 SpatVector

Example data

library(terra)
terra 1.7.62
p <- vect(system.file("ex/lux.shp", package="terra"))

If you plot a SpatVector without further arguments, you get black points, lines or polygons, and no legend.

plot(p)

65

Spatial Data in R

You can add colors like this

n <- nrow(p)
plot(p, col=rainbow(n))

66 Chapter 9. Maps

Spatial Data in R

But if you want colors it is probably easiest to use an attribute.

plot(p, "NAME_2", col=rainbow(25))

9.1. SpatVector 67

Spatial Data in R

You can request maps for multiple variables

plot(p, c("NAME_1", "NAME_2"), col=rainbow(25))

68 Chapter 9. Maps

Spatial Data in R

Below we also make two maps, but do it “by hand”. We adjust the spacing, and put the legends inside the map area,
and use non-rotated text for the vertical axis.

par(mfrow=c(1,2))
m <- c(3.1, 3.1, 2.1, 2.1)
plot(p, "NAME_1", col=rainbow(25), mar=m, plg=list(x="topright"), pax=list(las=1))
plot(p, "NAME_2", col=rainbow(25), mar=m, plg=list(x="topright", cex=.75),␣
→˓pax=list(las=1))

9.1. SpatVector 69

Spatial Data in R

More costumization. Choose the axes to draw, at a label and a box to the legend.

par(mfrow=c(1,2))
m <- c(3.1, 3.1, 1.1, 1.1)
plot(p, "NAME_1", col=rainbow(25), mar=m, plg=list(x="topright", title="District", bty =
→˓"o"), main="", axes=FALSE)
axis(1, at=c(5,7)); axis(1)
axis(2, at=c(49,51)); axis(2, las=1)

plot(p, "NAME_2", col=rainbow(25), mar=m, plg=list(x="topright", cex=.75, title="Canton",
→˓ bty = "o"), main="", axes=FALSE)
axis(1, at=c(5, 7)); axis(1)

70 Chapter 9. Maps

Spatial Data in R

We can combine multiple SpatVectors using lines and points to draw on top of what we plotted first.

d <- aggregate(p, "NAME_1")
plot(p, col="light blue", lty=2, border="red", lwd=2)
lines(d, lwd=5)
lines(d, col="white", lwd=1)
text(p, "NAME_2", cex=.8, halo=TRUE)

9.1. SpatVector 71

Spatial Data in R

The rasterVis package provides a lot of very nice plotting options as well.

9.2 SpatRaster

Example data

f <- system.file("ex/elev.tif", package="terra")
r <- rast(f)

The default display of a single layer SpatRaster depends on the data type, but there will always be a legend.

plot(r)

72 Chapter 9. Maps

Spatial Data in R

After plotting a SpatRaster you can add vector type spatial data (points, lines, polygons). You can do this with
functions points, lines, polys or plot(object, add=TRUE).

plot(r)

lines(p, lwd=2)
set.seed(12)
xy <- spatSample(r, 20, "random", na.rm=TRUE, xy=TRUE)
points(xy, pch=20, col="red", cex=2)

9.2. SpatRaster 73

Spatial Data in R

Or use a different legend type

m <- c(3.1, 3.1, 1.1, 1.1)
plot(r, type="interval", plg=list(x="topright"), mar=m)

74 Chapter 9. Maps

Spatial Data in R

If there are only a few values, the default is to show “classes”

rr <- round(r/100)
plot(rr, plg=list(x="topright"), mar=m)

9.2. SpatRaster 75

Spatial Data in R

If the raster is categorical you get the category labels in the legend.

Make a categorical (factor) raster

x <- classify(r, c(140, 300, 400, 550))
levels(x) <- data.frame(id=0:2, elevation=c("low", "intermediate", "high"))
is.factor(x)
[1] TRUE
x
class : SpatRaster
dimensions : 90, 95, 1 (nrow, ncol, nlyr)
resolution : 0.008333333, 0.008333333 (x, y)
extent : 5.741667, 6.533333, 49.44167, 50.19167 (xmin, xmax, ymin, ymax)
coord. ref. : lon/lat WGS 84 (EPSG:4326)
source(s) : memory
varname : elev
categories : elevation

(continues on next page)

76 Chapter 9. Maps

Spatial Data in R

(continued from previous page)

name : elevation
min value : low
max value : high

plot(x, col=c("green", "blue", "light gray"))

When plot is used with a multi-layer object, all layers are plotted (up to 16), unless the layers desired are indicated with
an additional argument.

library(terra)
b <- rast(system.file("ex/logo.tif", package="terra"))
plot(b)

9.2. SpatRaster 77

Spatial Data in R

r <- rast(p, res=0.01)
values(r) <- 1:ncell(r)
r <- mask(r, p)

In this case, it makes sense to combine the three layers into a single image, by assigning individual layers to one of the
three color channels (red, green and blue):

plotRGB(b, r=1, g=2, b=3)

78 Chapter 9. Maps

Spatial Data in R

You can also use a number of other plotting functions with SpatRasters, including hist, persp, contour}, and
density. See the help files for more info.

The rasterVis and tmap packages provides a lot of very nice mapping options as well.

9.3 Basemaps

You can get many different base-maps with the maptiles package. Reading the data again.

library(terra)
f <- system.file("ex/lux.shp", package="terra")
p <- vect(f)

library(maptiles)
bg <- get_tiles(ext(p))

(continues on next page)

9.3. Basemaps 79

Spatial Data in R

(continued from previous page)

plotRGB(bg)
lines(p, col="blue", lwd=3)

9.4 Interactive maps

You can use the leaflet package to make interactive maps.

library(leaflet)
m <- plet(p)
m

80 Chapter 9. Maps

Spatial Data in R

9.4. Interactive maps 81

	Introduction
	Spatial data
	Introduction
	Vector data
	Raster data
	Simple representation of spatial data

	Vector data
	Introduction
	Points
	Lines and polygons

	Raster data
	Introduction
	SpatRaster

	Reading and writing spatial data
	Introduction
	Vector files
	Reading
	Writing

	Raster files
	Reading raster data
	Writing raster data

	Coordinate Reference Systems
	Introduction
	Coordinate Reference Systems (CRS)
	Angular coordinates
	Projections
	Notation

	Assigning a CRS
	Transforming vector data
	Transforming raster data

	Vector data manipulation
	Basics
	Geometry and attributes
	Variables
	Merge
	Records

	Append and aggregate
	Append
	Aggregate
	Overlay
	Erase
	Intersect
	Union
	Cover
	Difference

	Spatial queries

	Raster data manipulation
	Introduction
	Creating SpatRaster objects
	Raster algebra
	‘High-level’ functions
	Modifying a SpatRaster object
	Overlay
	Classify
	Focal methods
	Distance
	Spatial configuration
	Predictions
	Vector to raster conversion

	Summarizing functions
	Helper functions
	Accessing cell values
	Coercion to other classes

	Maps
	SpatVector
	SpatRaster
	Basemaps
	Interactive maps

