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CHAPTER

ONE

INTRODUCTION

This document provides an introduction to species distribution modeling with R. Species distribution modeling (SDM)
is also known under other names including climate envelope-modeling, habitat modeling, and (environmental or eco-
logical) niche-modeling. The aim of SDM is to estimate the similarity of the conditions at any site to the conditions at
the locations of known occurrence (and perhaps of non-occurrence) of a phenomenon. A common application of this
method is to predict species ranges with climate data as predictors.

In SDM, the following steps are usually taken: (1) locations of occurrence of a species (or other phenomenon) are
compiled; (2) values of environmental predictor variables (such as climate) at these locations are extracted from spatial
databases; (3) the environmental values are used to fit a model to estimate similarity to the sites of occurrence, or
another measure such as abundance of the species; (4) The model is used to predict the variable of interest across an
the region of interest (and perhaps for a future or past climate).

We assume that you are familiar with most of the concepts in SDM. If in doubt, you could consult, for example, the
book by Janet Franklin (2009), the somewhat more theoretical book by Peterson et al. (2011), or the recent review
article by Elith and Leathwick (2009). It is important to have a good understanding of the interplay of environmental
(niche) and geographic (biotope) space – see Colwell and Rangel (2009) and Peterson et al. (2011) for a discussion.
SDM is a widely used approach but there is much debate on when and how to best use this method. While we refer
to some of these issues, in this document we do not provide an in-depth discussion of this scientific debate. Rather,
our objective is to provide practical guidance to implemeting the basic steps of SDM. We leave it to you to use other
sources to determine the appropriate methods for your research; and to use the ample opportunities provided by the R
environment to improve existing approaches and to develop new ones.

We also assume that you are already somewhat familiar with the R language and environment. It would be particularly
useful if you already had some experience with statistical model fitting (e.g. the glm function) and with spatial data
handling as implemented in the terra package.

When we present R code we will provide some explanation if we think it might be difficult or confusing. We will do
more of this earlier on in this document, so if you are relatively inexperienced with R and would like to ease into it,
read this text in the presented order.

SDM have been implemented in R in many different ways. Here we focus on the functions in the predicts and the
terra packages (but we also refer to other packages). If you want to test, or build on, some of the examples presented
here, make sure you have the latest versions of these packages, and their dependencies, installed. If you are using a
recent version of R, you can do that with:

install.packages(c("terra", "remotes", "predicts", "geodata"))

This document consists of 4 main parts. Part I is concerned with data preparation. This is often the most time consuming
part of a species distribution modeling project. You need to collect a sufficient number of occurrence records that
document presence (and perhaps absence or abundance) of the species of interest. You also need to have accurate
and relevant environmental data (predictor variables) at a sufficiently high spatial resolution. We first discuss some
aspects of assembling and cleaning species records, followed by a discussion of aspects of choosing and using the
predictor variables. A particularly important concern in species distribution modeling is that the species occurrence
data adequately represent the actual distribution of the species studied. For instance, the species should be correctly
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identified, the coordinates of the location data need to be accurate enough to allow the general species/environment to
be established, and the sample unbiased, or accompanied by information on known biases such that these can be taken
into account. Part II introduces the main steps in SDM: fitting a model, making a prediction, and evaluating the result.
Part III introduces different modeling methods in more detail (profile methods, regression methods, machine learning
methods, and geographic methods). In Part IV we discuss a number of applications (e.g. predicting the effect of climate
change), and a number of more advanced topics.

This is a work in progress. Suggestions are welcomed.

Robert J. Hijmans and Jane Elith

4 Chapter 1. Introduction



CHAPTER

TWO

DATA PREPARATION

2.1 Species occurrence data

Importing occurrence data into R is easy. But collecting, georeferencing, and cross-checking coordinate data is tedious.
Discussions about species distribution modeling often focus on comparing modeling methods, but if you are dealing
with species with few and uncertain records, your focus probably ought to be on improving the quality of the occurrence
data (Lobo, 2008). All methods do better if your occurrence data is unbiased and free of error (Graham et al., 2007)
and you have a relatively large number of records (Wisz et al., 2008).

2.2 Importing occurrence data

In most cases you will have a file with point locality data representing the known distribution of a species. Below is an
example of using read.table to read records that are stored in a text file.

We are using an example file that is installed with the predicts package, and for that reason we use a complex way to
construct the filename, but you can replace that with your own filename. (remember to use forward slashes in the path
of filenames!). system.file inserts the file path to where the predicts package is installed.

library(terra)
## terra 1.7.62
library(predicts)
filename <- file.path(system.file(package="predicts"), "ex/bradypus.csv")
# this is the file we will use:
basename(filename)
## [1] "bradypus.csv"

Now read the file and inspect the values.

bradypus <- read.csv(filename)
# first rows
head(bradypus)
## species lon lat
## 1 Bradypus variegatus -65.4000 -10.3833
## 2 Bradypus variegatus -65.3833 -10.3833
## 3 Bradypus variegatus -65.1333 -16.8000
## 4 Bradypus variegatus -63.6667 -17.4500
## 5 Bradypus variegatus -63.8500 -17.4000
## 6 Bradypus variegatus -64.4167 -16.0000
# we only need columns 2 and 3:
bradypus <- bradypus[,2:3]

(continues on next page)
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(continued from previous page)

head(bradypus)
## lon lat
## 1 -65.4000 -10.3833
## 2 -65.3833 -10.3833
## 3 -65.1333 -16.8000
## 4 -63.6667 -17.4500
## 5 -63.8500 -17.4000
## 6 -64.4167 -16.0000

You can also read such data from Excel files with the readxl package. No matter how you do it, the objective is to
get a matrix (or a data.frame) with at least 2 columns that hold the coordinates of the locations where a species was
observed. Coordinates are typically expressed as longitude and latitude (i.e. angular), but they could also be Easting
and Northing in UTM or another planar coordinate reference system (map projection). The convention used here is to
organize the coordinates columns so that longitude is the first and latitude the second column (think x and y axes in a
plot; longitude is x, latitude is y); they often are in the reverse order, leading to undesired results. In many cases you
will have additional columns, e.g., a column to indicate the species if you are modeling multiple species; and a column
to indicate whether this is a ‘presence’ or an ‘absence’ record (a much used convention is to code presence with a 1
and absence with a 0).

If you do not have any species distribution data you can get started by downloading data from the Global Biodiversity
Inventory Facility (GBIF). In the geodata package there is a function sp_occurrence that you can use for this. The
data used below were downloaded, and saved to a permanent data set for use in this chapter, using the sp_occurrence
function like this:

acaule <- geodata::sp_occurrence("solanum", "acaule*", geo=FALSE)
## Loading required namespace: jsonlite
## 7238 records found
## 0-300-600-900-1200-1500-1800-2100-2400-2700-3000-3300-3600-3900-4200

If you want to understand the order of the arguments given here to gbif or find out what other arguments you can
use with this function, check out the help file (remember you can’t access help files if the library is not loaded), by
typing: ?gbif or help(gbif). Note the use of the asterix in “acaule*” to not only request Solanum acaule, but also
variations such as the full name,*Solanum acaule* Bitter, or subspecies such as Solanum acaule subsp. aemulans.

Many occurrence records may not have geographic coordinates. In this case, out of the 1366 records that GBIF returned
(January 2013), there were 1082 records with coordinates,

# load the saved S. acaule data
acfile <- file.path(system.file(package="predicts"), "ex/acaule.csv")
acaule <- read.csv(acfile)

# how many rows and colums?
dim(acaule)
## [1] 1366 25

#select the records that have longitude and latitude data
colnames(acaule)
## [1] "species" "continent" "country"
## [4] "adm1" "adm2" "locality"
## [7] "lat" "lon" "coordUncertaintyM"
## [10] "alt" "institution" "collection"
## [13] "catalogNumber" "basisOfRecord" "collector"
## [16] "earliestDateCollected" "latestDateCollected" "gbifNotes"

(continues on next page)
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(continued from previous page)

## [19] "downloadDate" "maxElevationM" "minElevationM"
## [22] "maxDepthM" "minDepthM" "ISO2"
## [25] "cloc"
acgeo <- subset(acaule, !is.na(lon) & !is.na(lat))
dim(acgeo)
## [1] 1082 25

# show some values
acgeo[1:5, c(1:5,7:10)]
## species continent country adm1 adm2
## 1 Solanum acaule Bitter South America Argentina Jujuy Santa Catalina
## 2 Solanum acaule Bitter South America Peru Cusco Canchis
## 3 Solanum acaule f. acaule <NA> Argentina <NA> <NA>
## 4 Solanum acaule f. acaule <NA> Bolivia <NA> <NA>
## 5 Solanum acaule f. acaule <NA> Bolivia <NA> <NA>
## lat lon coordUncertaintyM alt
## 1 -21.9000 -66.1000 NA NA
## 2 -13.5000 -71.0000 NA 4500
## 3 -22.2666 -65.1333 NA 3800
## 4 -18.6333 -66.9500 NA 3700
## 5 -18.8000 -65.8833 NA 4080

Below is a simple way to make a map of the occurrence localities of Solanum acaule. It is important to make such
maps to assure that the points are, at least roughly, in the right location.

library(geodata)
wrld <- world(path=".")
plot(wrld, xlim=c(-110,60), ylim=c(-80,40), col="light yellow", border="light gray")
# add the points
points(acgeo$lon, acgeo$lat, col='red', pch=20)

2.2. Importing occurrence data 7
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The wrld dataset contains rough country outlines. You can use other datasets of polygons (or lines or points) as well.
For example, you can download higher resolution data country and subnational administrative boundaries data with
the gadm function of the geodata package. You can also read your own shapefile data using the vect function in the
terra package.

2.3 Data cleaning

Data ‘cleaning’ is particularly important for data sourced from species distribution data warehouses such as GBIF. Such
efforts do not specifically gather data for the purpose of species distribution modeling, so you need to understand the
data and clean them appropriately, for your application. Here we provide an example.

Solanum acaule is a species that occurs in the higher parts of the Andes mountains of southern Peru, Bolivia and
northern Argentina. Do you see any errors on the map?

There are a few records that map in the ocean just south of Pakistan. Any idea why that may have happened? It
is a common mistake, missing minus signs. The coordinates are around (65.4, 23.4) but they should in Northern

8 Chapter 2. Data preparation
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Argentina, around (-65.4, -23.4) (you can use the “click” function to query the coordintates on the map). There are two
records (rows 303 and 885) that map to the same spot in Antarctica (-76.3, -76.3). The locality description says that is
should be in Huarochiri, near Lima, Peru. So the longitude is probably correct, and erroneously copied to the latitude.
Interestingly the record occurs twice. The orignal source is the International Potato Center, and a copy is provided by
“SINGER” that aling the way appears to have “corrected” the country to Antarctica:

acgeo[c(303,885),1:10]
## species continent country adm1 adm2
## 328 solanum acaule acaule <NA> Bolivia <NA> <NA>
## 1169 Solanum acaule subsp. acaule South America Bolivia La Paz Pacajes
## locality lat lon coordUncertaintyM
## 328 <NA> -17.08300 -68.417 NA
## 1169 Pacajes. Caquiaviri, Kalla Centro. -17.01667 -68.600 NA
## alt
## 328 NA
## 1169 3950

The point in Brazil (record acaule[98,]) should be in soutern Bolivia, so this is probably due to a typo in the longitude.
Likewise, there are also three records that have plausible latitudes, but longitudes that are clearly wrong, as they are in
the Atlantic Ocean, south of West Africa. It looks like they have a longitude that is zero. In many data-bases you will
find values that are ‘zero’ where ‘no data’ was intended. The gbif function (when using the default arguments) sets
coordinates that are (0, 0) to NA, but not if one of the coordinates is zero. Let’s see if we find them by searching for
records with longitudes of zero.

Let’s have a look at these records:

lonzero <- subset(acgeo, lon==0)
# show all records, only the first 13 columns
lonzero[, 1:13]
## species continent country adm1 adm2
## 1159 Solanum acaule Bitter subsp. acaule <NA> Argentina <NA> <NA>
## 1160 Solanum acaule Bitter subsp. acaule <NA> Bolivia <NA> <NA>
## 1161 Solanum acaule Bitter subsp. acaule <NA> Peru <NA> <NA>
## 1162 Solanum acaule Bitter subsp. acaule <NA> Peru <NA> <NA>
## 1163 Solanum acaule Bitter subsp. acaule <NA> Argentina <NA> <NA>
## 1164 Solanum acaule Bitter subsp. acaule <NA> Bolivia <NA> <NA>
## locality lat lon
## 1159 between Quelbrada del Chorro and Laguna Colorada -23.716667 0
## 1160 Llave -16.083334 0
## 1161 km 205 between Puno and Cuzco -6.983333 0
## 1162 km 205 between Puno and Cuzco -6.983333 0
## 1163 between Quelbrada del Chorro and Laguna Colorada -23.716667 0
## 1164 Llave -16.083334 0
## coordUncertaintyM alt institution collection catalogNumber
## 1159 NA 3400 IPK GB WKS 30027
## 1160 NA 3900 IPK GB WKS 30050
## 1161 NA 4250 IPK WKS 30048 304709
## 1162 NA 4250 IPK GB WKS 30048
## 1163 NA 3400 IPK WKS 30027 304688
## 1164 NA 3900 IPK WKS 30050 304711

The records are from Bolivia, Peru and Argentina, confirming that coordinates are in error. Alternatively, it could have
been that the coordinates were correct, perhaps referring to a location in the Atlantic Ocean where a fish was caught
rather than a place where S. acaule was collected). Records with the wrong species name can be among the hardest
to correct (e.g., distinguishing between brown bears and sasquatch, Lozier et al., 2009). The one record in Ecuador is

2.3. Data cleaning 9
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like that, there is some debate whether that is actually a specimen of S. albicans or an anomalous hexaploid variety
of S. acaule.

2.4 Duplicate records

Interestingly, another data quality issue is revealed above: each record in ‘lonzero’ occurs twice. This could happen
because plant samples are often split and send to multiple herbariums. But in this case it seems that the IPK (The
Leibniz Institute of Plant Genetics and Crop Plant Research) provided these data twice to the GBIF database (perhaps
from seperate databases at IPK?). The function ‘duplicated’ can sometimes be used to remove duplicates.

# which records are duplicates (only for the first 10 columns)?
dups <- duplicated(lonzero[, 1:10])
# remove duplicates
lonzero <- lonzero[dups, ]
lonzero[,1:13]
## species continent country adm1 adm2
## 1162 Solanum acaule Bitter subsp. acaule <NA> Peru <NA> <NA>
## 1163 Solanum acaule Bitter subsp. acaule <NA> Argentina <NA> <NA>
## 1164 Solanum acaule Bitter subsp. acaule <NA> Bolivia <NA> <NA>
## locality lat lon
## 1162 km 205 between Puno and Cuzco -6.983333 0
## 1163 between Quelbrada del Chorro and Laguna Colorada -23.716667 0
## 1164 Llave -16.083334 0
## coordUncertaintyM alt institution collection catalogNumber
## 1162 NA 4250 IPK GB WKS 30048
## 1163 NA 3400 IPK WKS 30027 304688
## 1164 NA 3900 IPK WKS 30050 304711

Another approach might be to detect duplicates for the same species and some coordinates in the data, even if the
records were from collections by different people or in different years. (in our case, using species is redundant as we
have data for only one species)

# differentiating by (sub) species
# dups2 <- duplicated(acgeo[, c('species', 'lon', 'lat')])
# ignoring (sub) species and other naming variation
dups2 <- duplicated(acgeo[, c('lon', 'lat')])
# number of duplicates
sum(dups2)
## [1] 483
# keep the records that are _not_ duplicated
acg <- acgeo[!dups2, ]

Let’s repatriate the records near Pakistan to Argentina, and remove the records in Brazil, Antarctica, and with longi-
tude=0

i <- acg$lon > 0 & acg$lat > 0
acg$lon[i] <- -1 * acg$lon[i]
acg$lat[i] <- -1 * acg$lat[i]
acg <- acg[acg$lon < -60 & acg$lat > -50, ]

10 Chapter 2. Data preparation
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2.5 Cross-checking

It is important to cross-check coordinates by visual and other means. One approach is to compare the country (and lower
level administrative subdivisions) of the site as specified by the records, with the country implied by the coordinates
(Hijmans et al., 1999).

We first make a SpatVector

library(terra)
acv <- vect(acg, geom=c("lon", "lat"), crs="+proj=longlat +datum=WGS84")
class(acv)
## [1] "SpatVector"
## attr(,"package")
## [1] "terra"

We can now use do a spatial query of the polygons in wrld

ovr <- extract(acv, wrld)

Object ‘ovr’ has, for each point, the matching record from wrld. We need the variable ‘NAME_0’ in the data.frame of
wrld_simpl

head(ovr)
## id.y species continent country adm1 adm2 locality coordUncertaintyM alt
## 1 1 <NA> <NA> <NA> <NA> <NA> <NA> NA NA
## 2 2 <NA> <NA> <NA> <NA> <NA> <NA> NA NA
## 3 3 <NA> <NA> <NA> <NA> <NA> <NA> NA NA
## 4 4 <NA> <NA> <NA> <NA> <NA> <NA> NA NA
## 5 5 <NA> <NA> <NA> <NA> <NA> <NA> NA NA
## 6 6 <NA> <NA> <NA> <NA> <NA> <NA> NA NA
## institution collection catalogNumber basisOfRecord collector
## 1 <NA> <NA> <NA> <NA> <NA>
## 2 <NA> <NA> <NA> <NA> <NA>
## 3 <NA> <NA> <NA> <NA> <NA>
## 4 <NA> <NA> <NA> <NA> <NA>
## 5 <NA> <NA> <NA> <NA> <NA>
## 6 <NA> <NA> <NA> <NA> <NA>
## earliestDateCollected latestDateCollected gbifNotes downloadDate
## 1 <NA> <NA> <NA> <NA>
## 2 <NA> <NA> <NA> <NA>
## 3 <NA> <NA> <NA> <NA>
## 4 <NA> <NA> <NA> <NA>
## 5 <NA> <NA> <NA> <NA>
## 6 <NA> <NA> <NA> <NA>
## maxElevationM minElevationM maxDepthM minDepthM ISO2 cloc
## 1 NA NA NA NA <NA> <NA>
## 2 NA NA NA NA <NA> <NA>
## 3 NA NA NA NA <NA> <NA>
## 4 NA NA NA NA <NA> <NA>
## 5 NA NA NA NA <NA> <NA>
## 6 NA NA NA NA <NA> <NA>
cntr <- ovr$NAME_0

We should ask these two questions: (1) Which points (identified by their record numbers) do not match any country

2.5. Cross-checking 11
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(that is, they are in an ocean)? (There are none (because we already removed the points that mapped in the ocean)). (2)
Which points have coordinates that are in a different country than listed in the ‘country’ field of the GBIF record

i <- which(is.na(cntr))
i
## integer(0)
j <- which(cntr != acv$country)
# for the mismatches, bind the country names of the polygons and points
m <- cbind(cntr[j], acg$country[j])
colnames(m) <- c("polygons", "acaule")
m
## polygons acaule

In this case the mismatch is probably because wrld_simpl is not very precise as the records map to locations very close
to the border between Bolivia and its neighbors.

plot(acv)
lines(wrld, col='blue', lwd=2)

12 Chapter 2. Data preparation
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points(acv[j, ], col='red', pch=20, cex=2)

The wrld polygons that we used in the example above are not very precise, and they probably should not be used in a
real analysis. See GADM for more detailed administrative division files, or use functions from the predicts package
(e.g. predicts::gadm(country='BOL', level=0) to get the national borders of Bolivia; and `?predicts::world to
get more precise boundaries for all countries).

2.5. Cross-checking 13
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2.6 Georeferencing

If you have records with locality descriptions but no coordinates, you should consider georeferencing these. Not all
the records can be georeferenced. Sometimes even the country is unknown (country==“UNK”). Here we select only
records that do not have coordinates, but that do have a locality description.

georef <- subset(acaule, (is.na(lon) | is.na(lat)) & ! is.na(locality) )
dim(georef)
## [1] 131 25
georef[1:3,1:13]
## species continent country adm1 adm2
## 606 solanum acaule acaule BITTER <NA> Bolivia <NA> <NA>
## 607 solanum acaule acaule BITTER <NA> Peru <NA> <NA>
## 618 solanum acaule acaule BITTER <NA> Peru <NA> <NA>
## locality lat
## 606 La Paz P. Franz Tamayo Viscachani 3 km from Huaylapuquio to Pelechuco NA
## 607 Puno P. San Roman Near Tinco Palca NA
## 618 Puno P. Lampa Saraccocha NA
## lon coordUncertaintyM alt institution collection
## 606 NA NA 4000 PER001 CIP - Potato collection
## 607 NA NA 4000 PER001 CIP - Potato collection
## 618 NA NA 4100 PER001 CIP - Potato collection
## catalogNumber
## 606 CIP-762165
## 607 CIP-761962
## 618 CIP-762376

For georeferencing, you can try to use the predicts package function geocode that sends requests to the Google API
(this used to be simple, but these days you need to first get an “API_KEY” from Google). We demonstrate below, but its
use is generally not recommended because for accurate georeferencing you need a detailed map interface, and ideally
one that allows you to capture the uncertainty associated with each georeference (Wieczorek et al., 2004).

Here is an example for one of the records with longitude = 0, using Google’s geocoding service. We put the function
into a ‘try’ function, to assure elegant error handling if the computer is not connected to the Internet. Note that we use
the “cloc” (concatenated locality) field.

georef$cloc[4]
#b <- geocode(georef$cloc[4], geo_key="abcdef" )
#b

Before using the geocode function it is best to write the records to a table and “clean” them in a spreadsheet. Cleaning
involves translation, expanding abbreviations, correcting misspellings, and making duplicates exactly the same so that
they can be georeferenced only once. Then read the the table back into R, and create unique localities, georeference
these and merge them with the original data.

14 Chapter 2. Data preparation
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2.7 Sampling bias

Sampling bias is frequently present in occurrence records (Hijmans et al., 2001). One can attempt to remove some of
the bias by subsampling records, and this is illustrated below. However, subsampling reduces the number of records,
and it cannot correct the data for areas that have not been sampled at all. It also suffers from the problem that locally
dense records might in fact be a true reflection of the relative suitable of habitat. As in many steps in SDM, you need to
understand something about your data and species to implement them well. See Phillips et al. (2009) for an approach
with MaxEnt to deal with bias in occurrence records for a group of species.

# create a SpatRaster with the extent of acgeo
r <- rast(acv)
# set the resolution of the cells to (for example) 1 degree
res(r) <- 1

# extend (expand) the extent of the SpatRaster a little
r <- extend(r, ext(r)+1)

# sample:
set.seed(13)
acsel <- spatSample(acv, size=1, "random", strata=r)

# to illustrate the method and show the result
p <- as.polygons(r)
plot(p, border='gray')
points(acv)
# selected points in red
points(acsel, cex=1, col='red', pch='x')

2.7. Sampling bias 15
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Note that with the gridSample function you can also do ‘chess-board’ sampling. This can be useful to split the data
in ‘training’ and ‘testing’ sets (see the model evaluation chapter).

At this point, it could be useful to save the cleaned data set. For example, you can use as.data.frame(acsel) and
then write.csv. Or you can use pack and saveRDS so that we can use them later. We did that, and the saved file is
available from the predicts package and can be read like this:

file <- paste(system.file(package="predicts"), '/ex/acaule.rds', sep='')
acsel <- readRDS(file)

In a real research project you would want to spend much more time on this first data-cleaning and completion step,
partly with R, but also with other programs.

16 Chapter 2. Data preparation
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2.8 2.8 Exercises

1. Use the gbif function to download records for the African elephant (or another species of your preference, try
to get one with between 10 and 100 records). Use option “geo=FALSE” to also get records with no (numerical)
georeference.

2. Summarize the data: how many records are there, how many have coordinates, how many records without coor-
dinates have a textual georeference (locality description)?

3. Use the ‘geocode’ function to georeference up to 10 records without coordinates

4. Make a simple map of all the records, using a color and symbol to distinguish between the coordinates from gbif
and the ones returned by Google (via the geocode function). Use ‘gmap’ to create a basemap.

5. Do you think the observations are a reasonable representation of the distribution (and ecological niche) of the
species?

More advanced:

6. Use the ‘rasterize’ function to create a raster of the number of observations and make a map. Use “wrld_simpl”
from the maptools package for country boundaries.

7. Map the uncertainty associated with the georeferences. Some records in data returned by gbif have that. You can
also extract it from the data returned by the geocode function.
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THREE

ABSENCE AND BACKGROUND POINTS

Some of the early species distribution model algorithms, such as Bioclim and Domain only use ‘presence’ data in the
modeling process. Other methods also use ‘absence’ data or ‘background’ data. Logistic regression is the classical
approach to analyzing presence and absence data (and it is still much used, often implemented in a generalized linear
modeling (GLM) framework). If you have a large dataset with presence/absence from a well designed survey, you
should use a method that can use these data (i.e. do not use a modeling method that only considers presence data).
If you only have presence data, you can still use a method that needs absence data, by substituting absence data with
background data.

Background data (e.g. Phillips et al. 2009) are not attempting to guess at absence locations, but rather to characterize
environments in the study region. In this sense, background is the same, irrespective of where the species has been
found. Background data establishes the environmental domain of the study, whilst presence data should establish under
which conditions a species is more likely to be present than on average. A closely related but different concept, that
of “pseudo-absences”, is also used for generating the non-presence class for logistic models. In this case, researchers
sometimes try to guess where absences might occur – they may sample the whole region except at presence locations,
or they might sample at places unlikely to be suitable for the species. We prefer the background concept because it
requires fewer assumptions and has some coherent statistical methods for dealing with the “overlap” between presence
and background points (e.g. Ward et al. 2009; Phillips and Elith, 2011).

Survey-absence data has value. In conjunction with presence records, it establishes where surveys have been done, and
the prevalence of the species given the survey effort. That information is lacking for presence-only data, a fact that
can cause substantial difficulties for modeling presence-only data well. However, absence data can also be biased and
incomplete, as discussed in the literature on detectability (e.g., Kéry et al., 2010).

The terra package has a function to sample random points (background data) from a study area. You can use a ‘mask’
to exclude area with no data NA, e.g. areas not on land. You can use an ‘extent’ to further restrict the area from which
random locations are drawn.

In the example below, we first get the list of filenames with the predictor raster data (discussed in detail in the next
chapter). We use a raster as a ‘mask’ in the randomPoints function such that the background points are from the same
geographic area, and only for places where there are values (land, in our case).

Note that if the mask has the longitude/latitude coordinate reference system, the spatSample method adjusts the
probability of selecting a cells according to cell area, which varies by latitude.

library(predicts)
## Loading required package: terra
## terra 1.7.62
# get the predictors filename
f1 <- system.file("ex/bio.tif", package="predicts")
f2 <- system.file("ex/biome.tif", package="predicts")

r <- rast(c(f1, f2))

(continues on next page)
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(continued from previous page)

# select 5000 random points
# set seed to assure that the examples will always
# have the same random sample.
set.seed(1963)
bg <- spatSample(r, 5000, "random", na.rm=TRUE, as.points=TRUE)

And inspect the results by plotting

plot(r, 1)
points(bg, cex=0.5)

Now we repeat the sampling, but limit the area of sampling using a spatial extent

e <- ext(-80, -53, -39, -22)
bg2 <- spatSample(r, 500, "random", na.rm=TRUE, as.points=TRUE, ext=e)
plot(r, 1)
lines(e, col="red", lwd=2)
points(bg2, cex=0.5)
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There are several approaches one could use to sample ‘pseudo-absence’ points, i.e., points from a more restricted area
than ‘background’. VanDerWal et al. (2009) sampled withn a radius of presence points. Here is one way to implement
that, using the Solanum acaule data.

We first read the cleaned and subsetted S. acaule data that we produced in the previous chapter.

acfile <- file.path(system.file(package="predicts"), "ex/acaule.rds")
ac <- readRDS(acfile)

We first create a ‘circles’ model (see the chapter about geographic models), using an arbitrary radius of 50 km

# circles with a radius of 50 km
x <- buffer(ac, 50000)
pol <- aggregate(x)

And then we take a random sample of points within the polygons. We only want one point per grid cell.
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# sample randomly from all circles
set.seed(999)
samp1 <- spatSample(pol, 500, "random")

We do not what to include the same raster cells multiple times

pcells <- cells(r, samp1)
# remote duplicates
pcells <- unique(pcells[,2])
# back to coordinates
xy <- xyFromCell(r, pcells)

Plot to inspect the results:

plot(pol, axes=TRUE)
points(samp1, pch="+", cex=.5)
points(xy, cex=0.75, pch=20, col='blue')

Note that the blue points are not all within the polygons (circles), as they now represent the centers of the selected cells.
We could choose to select only those cells that have their centers within the circles, using the intersect method.

spxy <- vect(xy, crs="+proj=longlat +datum=WGS84")
xyInside <- intersect(spxy, x)

Similar results could also be achieved via the raster functions rasterize or extract.
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# make a new, empty, smaller raster
m <- crop(rast(r[[1]]), ext(x)+1)
# extract cell numbers for the circles
v <- cells(m, x)

# get unique cell numbers from which you could sample
v <- unique(v[,"cell"])
head(v)
## [1] 1505 1541 918 919 954 955

# to display the results
m[v] <- 1
plot(m)
lines(x)
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FOUR

ENVIRONMENTAL DATA

4.1 Raster data

In species distribution modeling, predictor variables are typically organized as raster (grid) type files. The predictors
should be layers in a SpatRaster representing variables of interest such as climate, soil, terrain, vegetation, or land
use. These data are typically stored in files in some kind of geospatial format. Almost all relevant formats can be
used (including geoTiff, netCDF, and Arc-ASCII). Avoid ASCII files if you can, as they tend to considerably slow
down processing speed. For any particular study the layers should all have the same spatial extent, resolution, origin,
and projection. If necessary, use functions like crop, extend, aggregate, resample, and project from the terra
package. See the Introduction to spatial data manipulation for more information about function you can use to prepare
your predictor variable data. See the help files and the vignette of the raster package for more info on how to do this.

The set of predictor variables (rasters) can be used to make a SpatRaster, which has many layers (see the Spatial Data
tutorial for more info.

Here we make a list of files that are installed with the predicts package and then create a SpatRaster from these, show
the names of each layer, and finally plot them all.

First get the folder with our files. Here we use a file that ships with R.

library(predicts)
## Loading required package: terra
## terra 1.7.62
f <- system.file("ex/bio.tif", package="predicts")
predictors <- rast(f)
predictors
## class : SpatRaster
## dimensions : 192, 186, 9 (nrow, ncol, nlyr)
## resolution : 0.5, 0.5 (x, y)
## extent : -125, -32, -56, 40 (xmin, xmax, ymin, ymax)
## coord. ref. : lon/lat WGS 84 (EPSG:4326)
## source : bio.tif
## names : bio1, bio5, bio6, bio7, bio8, bio9, ...
## min values : -23, 61, -212, 60, -66, -23, ...
## max values : 289, 422, 242, 461, 323, 289, ...
names(predictors)
## [1] "bio1" "bio5" "bio6" "bio7" "bio8" "bio9" "bio12" "bio16" "bio17"
plot(predictors)
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We can also make a plot of a single layer in a SpatRaster, and plot some additional data on top of it. First get the world
boundaries and the Bradypus data:

library(geodata)
wrld <- world(path=".")
file <- paste(system.file(package="predicts"), "/ex/bradypus.csv", sep="")
bradypus <- read.table(file, header=TRUE, sep=',')
# we do not need the first column
bradypus <- bradypus[,-1]

And now plot:

# first layer of the SpatRaster
plot(predictors, 1)
lines(wrld)
points(bradypus, col='blue')
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The example above uses data representing ‘bioclimatic variables’ from the WorldClim database (Hijmans et al., 2004).
You can download more recent versions of WorldClim with the geodata package.

Predictor variable selection can be important, particularly if the objective of a study is explanation. See, e.g., Austin
and Smith (1987), Austin (2002), Mellert et al., (2011). The early applications of species modeling tended to focus on
explanation (Elith and Leathwick 2009). Nowadays, the objective of SDM tends to be prediction. For prediction within
the same geographic area, variable selection might arguably be relatively less important, but for many prediction tasks
(e.g. to new times or places, see below) variable selection is critically important. In all cases it is important to use
variables that are relevant to the ecology of the species (rather than with the first dataset that can be found on the web!).
In some cases it can be useful to develop new, more ecologically relevant, predictor variables from existing data. For
example, one could use land cover data and the focal function in the raster package to create a new variable that
indicates how much forest area is available within x km of a grid cell, for a species that might have a home range of x.
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http://www.worldclim.org


Spatial Distribution Models

4.2 Extracting values from rasters

We now have a set of predictor variables (rasters) and occurrence points. The next step is to extract the values of the
predictors at the locations of the points. (This step can be skipped for the modeling methods that are implemented in
the dismo package). This is a very straightforward thing to do using the ‘extract’ function from the raster package. In
the example below we use that function first for the Bradypus occurrence points, then for 500 random background
points. We combine these into a single data.frame in which the first column (variable ‘pb’) indicates whether this is
a presence or a background point.

presvals <- extract(predictors, bradypus)
# remove the ID variable
presvals <- presvals[,-1]
# setting random seed to always create the same
# random set of points for this example
set.seed(0)
backgr <- spatSample(predictors, 500, "random", as.points=TRUE, na.rm=TRUE)
absvals <- values(backgr)

pb <- c(rep(1, nrow(presvals)), rep(0, nrow(absvals)))
sdmdata <- data.frame(cbind(pb, rbind(presvals, absvals)))
head(sdmdata)
## pb bio1 bio5 bio6 bio7 bio8 bio9 bio12 bio16 bio17
## 1 1 263 338 191 147 261 263 1639 724 62
## 2 1 263 338 191 147 261 263 1639 724 62
## 3 1 253 329 150 179 271 253 3624 1547 373
## 4 1 243 318 150 168 264 243 1693 775 186
## 5 1 243 318 150 168 264 243 1693 775 186
## 6 1 252 326 154 172 270 252 2501 1081 280
tail(sdmdata)
## pb bio1 bio5 bio6 bio7 bio8 bio9 bio12 bio16 bio17
## 611 0 263 324 207 117 260 263 2512 984 206
## 612 0 251 326 154 172 264 251 2053 886 194
## 613 0 235 311 141 170 244 235 1584 734 65
## 614 0 179 265 91 174 188 179 1633 727 125
## 615 0 254 325 182 143 257 254 1384 492 233
## 616 0 138 344 -70 414 229 138 513 224 42
summary(sdmdata)
## pb bio1 bio5 bio6
## Min. :0.0000 Min. : -8.0 Min. : 90.0 Min. :-182.00
## 1st Qu.:0.0000 1st Qu.:169.0 1st Qu.:299.0 1st Qu.: 33.25
## Median :0.0000 Median :238.5 Median :318.0 Median : 150.00
## Mean :0.1883 Mean :209.8 Mean :305.1 Mean : 114.67
## 3rd Qu.:0.0000 3rd Qu.:259.0 3rd Qu.:331.2 3rd Qu.: 198.00
## Max. :1.0000 Max. :286.0 Max. :413.0 Max. : 236.00
## bio7 bio8 bio9 bio12
## Min. : 64.0 Min. :-38.0 Min. : -8.0 Min. : 1.0
## 1st Qu.:119.8 1st Qu.:212.0 1st Qu.:169.0 1st Qu.: 757.2
## Median :163.0 Median :249.5 Median :238.5 Median :1387.5
## Mean :190.4 Mean :221.8 Mean :209.8 Mean :1532.2
## 3rd Qu.:247.2 3rd Qu.:261.0 3rd Qu.:259.0 3rd Qu.:2192.8
## Max. :444.0 Max. :316.0 Max. :286.0 Max. :7682.0
## bio16 bio17
## Min. : 1.0 Min. : 0.00

(continues on next page)
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(continued from previous page)

## 1st Qu.: 311.8 1st Qu.: 38.75
## Median : 596.0 Median : 103.50
## Mean : 624.0 Mean : 157.59
## 3rd Qu.: 895.2 3rd Qu.: 219.25
## Max. :2458.0 Max. :1496.00

There are alternative approaches possible here. For example, one could extract multiple points in a radius as a potential
means for dealing with mismatch between location accuracy and grid cell size. If one would make 10 datasets that
represent 10 equally valid “samples” of the environment in that radius, that could be then used to fit 10 models and
explore the effect of uncertainty in location.

To visually investigate colinearity in the environmental data (at the presence and background points) you can use a pairs
plot. See Dormann et al. (2013) for a discussion of methods to remove colinearity.

pairs(sdmdata[,2:5], cex=0.1)

A pairs plot of the values of the climate data at the Bradypus occurrence sites.
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To use the sdmdata and presvals in the next chapter, we save it to disk.

saveRDS(sdmdata, "sdm.Rds")
saveRDS(presvals, "pvals.Rds")
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FIVE

MODEL FITTING, PREDICTION, AND EVALUATION

5.1 Model fitting

Model fitting is technically quite similar across the modeling methods that exist in R. Most methods take a formula
identifying the dependent and independent variables, accompanied with a data.frame that holds these variables.
Details on specific methods are provided further down on this document, in part III.

A simple formula could look like: y ~ x1 + x2 + x3, i.e., y is a function of x1, x2, and x3. Another example
is y ~ ., which means that y is a function of all other variables in the data.frame provided to the function. See
help('formula') for more details about the formula syntax. In the example below, the function glm is used to fit
generalized linear models. glm returns a model object.

Note that in the examples below, we are using the data.frame ‘sdmdata’ again. First read sdmdata from disk (we saved
it at the end of the previous chapter).

sdmdata <- readRDS("sdm.Rds")
presvals <- readRDS("pvals.Rds")

m1 <- glm(pb ~ bio1 + bio5 + bio12, data=sdmdata)
class(m1)
## [1] "glm" "lm"
summary(m1)
##
## Call:
## glm(formula = pb ~ bio1 + bio5 + bio12, data = sdmdata)
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.265e-02 9.729e-02 0.952 0.341341
## bio1 1.351e-03 3.890e-04 3.472 0.000554 ***
## bio5 -1.337e-03 4.495e-04 -2.973 0.003060 **
## bio12 1.437e-04 1.662e-05 8.648 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.1158131)
##
## Null deviance: 94.156 on 615 degrees of freedom
## Residual deviance: 70.878 on 612 degrees of freedom
## AIC: 426.16
##

(continues on next page)
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## Number of Fisher Scoring iterations: 2

m2 = glm(pb ~ ., data=sdmdata)
m2
##
## Call: glm(formula = pb ~ ., data = sdmdata)
##
## Coefficients:
## (Intercept) bio1 bio5 bio6 bio7 bio8
## 0.1844517 -0.0047289 0.0193746 -0.0155329 -0.0184310 0.0008068
## bio9 bio12 bio16 bio17
## NA 0.0004841 -0.0006574 -0.0008551
##
## Degrees of Freedom: 615 Total (i.e. Null); 607 Residual
## Null Deviance: 94.16
## Residual Deviance: 68.18 AIC: 412.2

Models that are implemented in the predicts package do not use a formula (and most models only take presence
points). The envelope (a.k.a. “Bioclim”) is an example. It only uses presence data, so we use ‘presvals’ instead of
‘sdmdata’.

library(predicts)
## Loading required package: terra
## terra 1.7.62
bc <- envelope(presvals[,c("bio1", "bio5", "bio12")])
bc
## Formal class 'envelope_model' [package "predicts"] with 7 slots
## ..@ min : Named num [1:3] 150 206 372
## .. ..- attr(*, "names")= chr [1:3] "bio1" "bio5" "bio12"
## ..@ max : Named num [1:3] 282 351 7682
## .. ..- attr(*, "names")= chr [1:3] "bio1" "bio5" "bio12"
## ..@ factor : list()
## ..@ names : chr [1:3] "bio1" "bio5" "bio12"
## ..@ presence :'data.frame': 116 obs. of 3 variables:
## .. ..$ bio1 : num [1:116] 263 263 253 243 243 252 240 275 271 274 ...
## .. ..$ bio5 : num [1:116] 338 338 329 318 318 326 317 335 327 329 ...
## .. ..$ bio12: num [1:116] 1639 1639 3624 1693 1693 ...
## ..@ absence :'data.frame': 0 obs. of 0 variables
## Formal class 'data.frame' [package "methods"] with 4 slots
## .. .. ..@ .Data : list()
## .. .. ..@ names : chr(0)
## .. .. ..@ row.names: int(0)
## .. .. ..@ .S3Class : chr "data.frame"
## ..@ hasabsence: logi FALSE
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5.2 Model prediction

Different modeling methods return different type of ‘model’ objects (typically they have the same name as the modeling
method used). All of these ‘model’ objects, irrespective of their exact class, can be used to with the predict function
to make predictions for any combination of values of the independent variables. This is illustrated in the example below
where we make predictions with the glm model object ‘m1’ and for envelope model ‘bc’, for three records with values
for variables bio1, bio5 and bio12 (the variables used in the example above to create the model objects).

bio1 <- c(40, 150, 200)
bio5 <- c(60, 115, 290)
bio12 <- c(600, 1600, 1700)
pd <- data.frame(cbind(bio1, bio5, bio12))
pd
## bio1 bio5 bio12
## 1 40 60 600
## 2 150 115 1600
## 3 200 290 1700
predict(m1, pd)
## 1 2 3
## 0.1527031 0.3714683 0.2194479

Making such predictions for a few environments can be very useful to explore and understand model predictions. For
example it used in the response function that creates response plots for each variable, with the other variables at their
median value.

pr <- partialResponse(bc, presvals, "bio1")
plot(pr, type="l")
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In most cases, howver, the purpose of SDM is to create a map of suitability scores. We can do that by providing the
predict function with a Raster* object and a model object. As long as the variable names in the model object are
available as layers in the SpatRaster object.

library(predicts)
f <- system.file("ex/bio.tif", package="predicts")
predictors <- rast(f)
names(predictors)
## [1] "bio1" "bio5" "bio6" "bio7" "bio8" "bio9" "bio12" "bio16" "bio17"
p <- predict(predictors, m1)
plot(p)

5.3 Model evaluation

It is much easier to create a model and make a prediction than to assess how good the model is, and whether it is can
be used for a specific purpose. Most model types have different measures that can help to assess how good the model
fits the data. It is worth becoming familiar with these and understanding their role, because they help you to assess
whether there is anything substantially wrong with your model. Most statistics or machine learning texts will provide
some details. For instance, for a GLM one can look at how much deviance is explained, whether there are patterns
in the residuals, whether there are points with high leverage and so on. However, since many models are to be used
for prediction, much evaluation is focused on how well the model predicts to points not used in model training (see
following section on data partitioning). Before we start to give some examples of statistics used for this evaluation, it
is worth considering what else can be done to evaluate a model. Useful questions include:

• Does the model seem sensible, ecologically?
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• Do the fitted functions (the shapes of the modeled relationships) make sense?

• Do the predictions seem reasonable? (map them, and think about them)?

• Are there any spatial patterns in model residuals? (see Leathwick and Whitehead 2001 for an interesting example)

Most modelers rely on cross-validation. This consists of creating a model with one ‘training’ data set, and testing it
with another data set of known occurrences. Typically, training and testing data are created through random sampling
(without replacement) from a single data set. Only in a few cases, e.g. Elith et al., 2006, training and test data are from
different sources and pre-defined.

Different measures can be used to evaluate the quality of a prediction (Fielding and Bell, 1997, Liu et al., 2011; and
Potts and Elith (2006) for abundance data), perhaps depending on the goal of the study. Many measures for evaluating
models based on presence-absence or presence-only data are ‘threshold dependent’. That means that a threshold must be
set first (e.g., 0.5, though 0.5 is rarely a sensible choice – e.g. see Lui et al. 2005). Predicted values above that threshold
indicate a prediction of ‘presence’, and values below the threshold indicate ‘absence’. Some measures emphasize the
weight of false absences; others give more weight to false presences.

Much used statistics that are threshold independent are the correlation coefficient and the Area Under the Receiver
Operator Curve (AUROC, generally further abbreviated to AUC). AUC is a measure of rank-correlation. In unbiased
data, a high AUC indicates that sites with high predicted suitability values tend to be areas of known presence and
locations with lower model prediction values tend to be areas where the species is not known to be present (absent or
a random point). An AUC score of 0.5 means that the model is as good as a random guess. See Phillips et al. (2006)
for a discussion on the use of AUC in the context of presence-only rather than presence/absence data.

Here we illustrate the computation of the correlation coefficient and AUC with two random variables. p (presence)
has higher values, and represents the predicted value for 50 known cases (locations) where the species is present, and
a (absence) has lower values, and represents the predicted value for 50 known cases (locations) where the species is
absent.

p <- rnorm(50, mean=0.7, sd=0.3)
a <- rnorm(50, mean=0.4, sd=0.4)
par(mfrow=c(1, 2))
plot(sort(p), col='red', pch=21)
points(sort(a), col='blue', pch=24)
legend(1, 0.95 * max(a,p), c('presence', 'absence'),

pch=c(21,24), col=c('red', 'blue'))
comb <- c(p,a)
group <- c(rep('presence', length(p)), rep('absence', length(a)))
boxplot(comb~group, col=c('blue', 'red'))
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We created two variables with random normally distributed values, but with different mean and standard deviation.
The two variables clearly have different distributions, and the values for ‘presence’ tend to be higher than for ‘absence’.
Here is how you can compute the correlation coefficient and the AUC:

group = c(rep(1, length(p)), rep(0, length(a)))
cor.test(comb, group)$estimate
## cor
## 0.238617
mv <- wilcox.test(p,a)
auc <- as.numeric(mv$statistic) / (length(p) * length(a))
auc
## [1] 0.6172

Below we show how you can compute these, and other statistics more conveniently, with the evaluate function in the
predicts package. See ?pa_evaluate for info on additional evaluation measures that are available.
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library(predicts)
e <- pa_evaluate(p=p, a=a)
class(e)
## [1] "paModelEvaluation"
## attr(,"package")
## [1] "predicts"
e
## @stats
## np na prevalence auc cor pcor ODP
## 1 50 50 0.5 0.617 0.239 0.017 0.5
##
## @thresholds
## max_kappa max_spec_sens no_omission equal_prevalence equal_sens_spec
## 1 0.15 0.15 -0.026 0.503 0.597
##
## @tr_stats
## treshold kappa CCR TPR TNR FPR FNR PPP NPP MCR OR
## 1 -0.53 0 0.5 1 0 1 0 0.5 NaN 0.5 NaN
## 2 -0.17 0.02 0.51 1 0.02 0.98 0 0.51 1 0.49 Inf
## 3 -0.11 0.04 0.52 1 0.04 0.96 0 0.51 1 0.48 Inf
## 4 ... ... ... ... ... ... ... ... ... ... ...
## 100 1.21 0.02 0.51 0.02 1 0 0.98 1 0.51 0.49 Inf
## 101 1.21 0.02 0.51 0.02 1 0 0.98 1 0.51 0.49 Inf
## 102 1.21 0 0.5 0 1 0 1 NaN 0.5 0.5 NaN
par(mfrow=c(1, 2))
plot(e, "density")
plot(e, "boxplot", col=c('blue', 'red'))
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Back to some real data, presence-only in this case. We’ll divide the data in two random sets, one for training a Bioclim
model, and one for evaluating the model.

samp <- sample(nrow(sdmdata), round(0.75 * nrow(sdmdata)))
traindata <- sdmdata[samp,]
traindata <- traindata[traindata[,1] == 1, 2:9]
testdata <- sdmdata[-samp,]
bc <- envelope(traindata)
e <- pa_evaluate(testdata[testdata==1,], testdata[testdata==0,], bc)
e
## @stats
## np na prevalence auc cor pcor ODP
## 1 34 120 0.221 0.798 0.33 0 0.779
##
## @thresholds
## max_kappa max_spec_sens no_omission equal_prevalence equal_sens_spec
## 1 0.049 0.036 0 0.219 0.085

(continues on next page)
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##
## @tr_stats
## treshold kappa CCR TPR TNR FPR FNR PPP NPP MCR OR
## 1 0 0 0.22 1 0 1 0 0.22 NaN 0.78 NaN
## 2 0.02 0.41 0.71 0.94 0.64 0.36 0.06 0.43 0.97 0.29 28.65
## 3 0.04 0.46 0.75 0.91 0.71 0.29 0.09 0.47 0.97 0.25 25.1
## 4 ... ... ... ... ... ... ... ... ... ... ...
## 39 0.8 0.05 0.79 0.03 1 0 0.97 1 0.78 0.21 Inf
## 40 0.8 0 0.78 0 1 0 1 NaN 0.78 0.22 NaN
## 41 0.8 0 0.78 0 1 0 1 NaN 0.78 0.22 NaN
plot(e, "ROC")

In real projects, you would want to use k-fold data partitioning instead of a single random sample. The
predicts::kfold facilitates that type of data partitioning. It creates a vector that assigns each row in the data matrix
to a a group (between 1 to k).
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Let’s first create presence and background data.

pres <- sdmdata[sdmdata[,1] == 1, 2:9]
back <- sdmdata[sdmdata[,1] == 0, 2:9]

The background data will only be used for model testing and does not need to be partitioned. We now partition the data
into 5 groups.

k <- 5
group <- folds(pres, k)
group[1:10]
## [1] 4 3 4 3 4 1 2 2 1 1
unique(group)
## [1] 4 3 1 2 5
table(group)
## group
## 1 2 3 4 5
## 23 23 24 23 23

Now we can fit and test our model five times. In each run, the records corresponding to one of the five groups is only
used to evaluate the model, while the other four groups are only used to fit the model. The results are stored in a list
called ‘e’.

e <- list()
for (i in 1:k) {

train <- pres[group != i,]
test <- pres[group == i,]
bc <- envelope(train)
p <- predict(bc, test)
a <- predict(bc, back)
e[[i]] <- pa_evaluate(p, a)

}

We can extract several things from list e, but let’s restrict ourselves to the AUC values and the “maximum of the sum
of the sensitivity (true positive rate) and specificity (true negative rate)” threshold “spec_sens” (this is sometimes uses
as a threshold for setting cells to presence or absence).

stats <- lapply(e, function(x){x@stats})
stats <- do.call(rbind, stats)
colMeans(stats)
## np na prevalence auc cor pcor
## 2.320000e+01 5.000000e+02 4.434195e-02 7.923536e-01 1.892941e-01 3.916510e-04
## ODP
## 9.556581e-01

The use of AUC in evaluating SDMs has been criticized (Lobo et al. 2008, Jiménez-Valverde 2011). A particularly
sticky problem is that the values of AUC vary with the spatial extent used to select background points. Generally,
the larger that extent, the higher the AUC value. Therefore, AUC values are generally biased and cannot be directly
compared. Hijmans (2012) suggests that one could remove “spatial sorting bias” (the difference between the distance
from testing-presence to training-presence and the distance from testing-absence to training-presence points) through
“point-wise distance sampling”.

fsp <- system.file("/ex/bradypus.csv", package="predicts")
bradypus <- read.csv(fsp)

(continues on next page)
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bradypus <- bradypus[,-1]
presvals <- extract(predictors, bradypus)
set.seed(0)
backgr <- spatSample(predictors, 500, na.rm=TRUE, xy=TRUE, values=FALSE)

nr <- nrow(bradypus)
s <- sample(nr, 0.25 * nr)
pres_train <- bradypus[-s, ]
pres_test <- bradypus[s, ]

nr <- nrow(backgr)
set.seed(9)
s <- sample(nr, 0.25 * nr)
back_train <- backgr[-s, ]
back_test <- backgr[s, ]

library(dismo)
## Loading required package: raster
## Loading required package: sp
##
## Attaching package: 'sp'
## The following object is masked from 'package:predicts':
##
## geometry
##
## Attaching package: 'dismo'
## The following objects are masked from 'package:predicts':
##
## mess, threshold
sb <- dismo::ssb(pres_test, back_test, pres_train)
sb[,1] / sb[,2]
## p
## 0.06266938

sb[,1] / sb[,2] is an indicator of spatial sorting bias (SSB). If there is no SSB this value should be 1, in these data
it is close to zero, indicating that SSB is very strong. Let’s create a subsample in which SSB is removed.

i <- pwd_sample(pres_test, back_test, pres_train, n=1, tr=0.1)
pres_test_pwd <- pres_test[!is.na(i[,1]), ]
back_test_pwd <- back_test[na.omit(as.vector(i)), ]
sb2 <- dismo::ssb(pres_test_pwd, back_test_pwd, pres_train)
sb2[1]/ sb2[2]
## [1] 1.000111

Spatial sorting bias is much reduced now; but notice how the AUC dropped.

bc <- envelope(predictors, pres_train)
ptst <- predict(bc, extract(predictors, pres_test))
btst <- predict(bc, extract(predictors, back_test))
pa_evaluate(ptst, btst)@stats
## np na prevalence auc cor pcor ODP
## 1 29 125 0.1883117 0.8097931 0.3608806 4.269173e-06 0.8116883

(continues on next page)
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pwdptst <- predict(bc, extract(predictors, pres_test_pwd))
pwdbtst <- predict(bc, extract(predictors, back_test_pwd))
pa_evaluate(pwdptst, pwdbtst)@stats
## np na prevalence auc cor pcor ODP
## 1 11 11 0.5 0.6280992 0.1496341 0.5062836 0.5
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