The raster package

Robert J. Hijmans

Jan 10, 2023

10

The raster package

Classes

2.1 RasterLayer e
2.2 RasterStack and RasterBrick
23 OtherClasses v v v v v i e e e e e e

Creating Raster™® objects

Raster algebra

High-level methods

5.1 Modifying a Raster* object
52 Overlay e
53 Calc. e e
54 Reclassify
5.5 Focal
5.6 Distance e e
5.7 Spatial configurationo
5.8 Predictions e
5.9 Vector to raster CONVersion v v v v v v
5.10 Summarize oL e
Plotting

Writing files

7.1 Fileformat

Cell-level functions

8.1 Introduction
8.2 Accessingcellvalues
Miscellaneous

9.1 Sessionoptions L o
9.2 Coercion to objects of other classes
9.3 Extending raster objectso

Appendix I. Writing functions for large raster files

10.1 Introduction
102 Hownottodoit
10.3 Rowbyrowprocessing

CONTENTS

A~ W W W

19

23

................... 23

25

................... 25
................... 26

29

................... 29
................... 29
................... 30

10.4 Processing multiple rows at ONCE i e e e e e e e e e e e e 35
10.5 Filename optional L L e e e e e e e e e e 36
10.6 Acomplete function e e e 38
10.7 Debugging e e e e e e e e e e 40
10.8 Methods e e 40
10.9 Mutli-core functions L e e e 40
11 Appendix I1. The “rasterfile’” format 43
11.1 Introduction o L e e e e e 43
11.2 inifiles o o 43
I11.3 Sections. o o o o e e e e e e 44
I1.3.1 general o o e e e e e e e e e 44
1132 georeference e 44
11.3.3 datao e e e e e 44
11.3.4 description o L. e e 45

CHAPTER
ONE

THE RASTER PACKAGE

This vignette describes the R package raster. A raster is a spatial (geographic) data structure that divides a region into
rectangles called “cells” (or “pixels”) that can store one or more values for each of these cells. Such a data structure is
also referred to as a “grid” and is often contrasted with “vector” data that is used to represent points, lines, and polygons.

The raster package has functions for creating, reading, manipulating, and writing raster data. The package pro-
vides, among other things, general raster data manipulation functions that can easily be used to develop more specific
functions. For example, there are functions to read a chunk of raster values from a file or to convert cell numbers to
coordinates and back. The package also implements raster algebra and most functions for raster data manipulation that
are common in Geographic Information Systems (GIS). These functions are similar to those in GIS programs such as
Idrisi, the raster functions of GRASS, and the “grid” module of the now defunct ArcInfo (“workstation”).

A notable feature of the raster package is that it can work with raster datasets that are stored on disk and are too large
to be loaded into memory (RAM). The package can work with large files because the objects it creates from these files
only contain information about the structure of the data, such as the number of rows and columns, the spatial extent,
and the filename, but it does not attempt to read all the cell values in memory. In computations with these objects, data
is processed in chunks. If no output filename is specified to a function, and the output raster is too large to keep in
memory, the results are written to a temporary file.

To understand what is covered in this vignette, you must understand the basics of the R language. There is a multitude
of on-line and other resources that can help you to get acquainted with it. The raster package does not operate in
isolation. For example, for vector type data it uses classes defined in the sp package.

In the next section, some general aspects of the design of the raster package are discussed, notably the structure of
the main classes, and what they represent. The use of the package is illustrated in subsequent sections. raster has a
large number of functions, not all of them are discussed here, and those that are discussed are mentioned only briefly.
See the help files of the package for more information on individual functions and help("raster-package™) for an
index of functions by topic.

The raster package

2 Chapter 1. The raster package

CHAPTER
TWO

CLASSES

The package is built around a number of “classes” of which the RasterLayer, RasterBrick, and RasterStack are
the most important. When discussing methods that can operate on objects of all three of these classes, they are referred
to as Raster® objects.

2.1 RasterLayer

A RasterLayer represents single-layer (variable) raster data. A RasterLayer object always stores a number of
fundamental parameters that describe it. These include the number of columns and rows, the coordinates of its spatial
extent (‘bounding box’), and the coordinate reference system (the ‘map projection’). In addition, a RasterLayer can
store information about the file in which the raster cell values are stored (if there is such a file). A RasterLayer can
also hold the raster cell values in memory.

2.2 RasterStack and RasterBrick

It is quite common to analyze raster data using single-layer objects. However, in many cases multi-variable raster data
sets are used. The raster package has two classes for multi-layer data the RasterStack and the RasterBrick. The
principal difference between these two classes is that a RasterBrick can only be linked to a single (multi-layer) file.
In contrast, a RasterStack can be formed from separate files and/or from a few layers (‘bands’) from a single file.

In fact, a RasterStack is a collection of RasterLayer objects with the same spatial extent and resolution. In essence
itis alist of RasterLayer objects. A RasterStack can easily be formed form a collection of files in different locations
and these can be mixed with RasterLayer objects that only exist in memory.

A RasterBrick is truly a multilayered object, and processing a RasterBrick can be more efficient than processing
a RasterStack representing the same data. However, it can only refer to a single file. A typical example of such a file
would be a multi-band satellite image or the output of a global climate model (with e.g., a time series of temperature
values for each day of the year for each raster cell). Methods that operate on RasterStack and RasterBrick objects
typically return a RasterBrick.

The raster package

2.3 Other Classes

Below is some more detail, you do not need to read or understand this section to use the raster package.

The three classes described above inherit from the raster class (that means they are derived from this more basic
‘parent’ class by adding something to that class) which itself inherits from the BasicRaster class. The BasicRaster
only has a few properties (referred to as ‘slots’ in S4 speak): the number of columns and rows, the coordinate reference
system (which itself is an object of class CRS, which is defined in package sp) and the spatial extent, which is an object
of class Extent.

An object of class Extent has four slots: xmin, xmax, ymin, and ymax. These represent the minimum and maximum
x and y coordinates of the of the Raster object. These would be, for example, -180, 180, -90, and 90, for a global raster
with longitude/latitude coordinates. Note that raster uses the coordinates of the extremes (corners) of the entire raster
(unlike some files/programs that use the coordinates of the center of extreme cells).

raster is a virtual class. This means that it cannot be instantiated (you cannot create objects from this class). It
was created to allow the definition of methods for that class. These methods will be dispatched when called with a
descendent of the class (i.e. when the method is called with a RasterLayer, RasterBrick or RasterStack object
as argument). This allows for efficient code writing because many methods are the same for any of these three classes,
and hence a single method for raster suffices.

RasterStackBrick is a class union of the RasterStack and RasterBrick class. This is a also a virtual class. It
allows defining methods (functions) that apply to both RasterStack and RasterBrick objects.

4 Chapter 2. Classes

CHAPTER
THREE

CREATING RASTER* OBJECTS

A RasterLayer can easily be created from scratch using the function raster. The default settings will create a
global raster data structure with a longitude/latitude coordinate reference system and 1 by 1 degree cells. You can
change these settings by providing additional arguments such as xmin, nrow, ncol, and/or crs, to the function. You
can also change these parameters after creating the object. If you set the projection, this is only to properly define it,
not to change it. To transform a RasterLayer to another coordinate reference system (projection) you can use the
function ** projectRaster**.

Here is an example of creating and changing a RasterLayer object ‘r’ from scratch.

library(raster)

RasterLayer with the default parameters

X <- raster()

X

class : RasterLayer

dimensions : 180, 360, 64800 (nrow, ncol, ncell)

resolution : 1, 1 (x, y)

extent : -180, 180, -90, 90 (xmin, xmax, ymin, ymax)
crs : +proj=longlat +datum=WGS84 +no_defs

With other parameters

X <- raster(ncol=36, nrow=18, xmn=-1000, xmx=1000, ymn=-100, ymx=900)
that can be changed

res(x)

[1] 55.55556 55.55556

change resolution
res(x) <- 100

res(x)

[1] 100 100

ncol (x)

[1] 20

change the numer of columns (affects resolution)
ncol(x) <- 18

ncol (x)

[1] 18

res(x)

[1] 111.1111 100.0000

set the coordinate reference system (CRS) (define the projection)
projection(x) <- "+proj=utm +zone=48 +datum=WGS84"
X

(continues on next page)

The raster package

(continued from previous page)

class : RasterLayer

dimensions : 10, 18, 180 (nrow, ncol, ncell)

resolution : 111.1111, 100 (x, y)

extent : -1000, 1000, -100, 900 (xmin, xmax, ymin, ymax.)
crs : +proj=utm +zone=48 +datum=WGS84 +units=m +no_defs

The object x created in the example above only consist of a “skeleton”, that is, we have defined the number of rows and
columns, and where the raster is located in geographic space, but there are no cell-values associated with it. Setting
and accessing values is illustrated below.

r <- raster(ncol=10, nrow=10)
ncell(r)

[1] 100

hasValues(r)

[1] FALSE

use the 'values' function
e.g.,

values(r) <- 1l:ncell(r)

or

set.seed(0)

values(r) <- runif(ncell(r))

hasValues(r)

[1] TRUE

inMemory (r)

[1] TRUE

values(r)[1:10]

[1] 0.8966972 0.2655087 0.3721239 0.5728534 0.9082078 0.2016819 0.8983897
[8] 0.9446753 0.6607978 0.6291140

plot(r, main='Raster with 100 cells')

6 Chapter 3. Creating Raster* objects

The raster package

Raster with 100 cells

150
I

100
I

= 0.8
0.6

o

— 0.4
o
' — 0.2
D L]
=
o
o

| | | | | | |
-150 -100 -50 0 50 100 150

In some cases, for example when you change the number of columns or rows, you will lose the values associated with
the RasterLayer if there were any (or the link to a file if there was one). The same applies, in most cases, if you
change the resolution directly (as this can affect the number of rows or columns). Values are not lost when changing
the extent as this change adjusts the resolution, but does not change the number of rows or columns.

hasValues(r)
[1] TRUE
res(r)

[1] 36 18
dim(r)

[1] 10 10 1
xmax (r)

[1] 180

change the maximum x coordinate of the extent (bounding box) of the RasterLayer
xmax(r) <- 0O

(continues on next page)

The raster package

(continued from previous page)

hasValues(r)

[1] TRUE
res(r)

[1] 18 18
dim(r)

[1] 10 10 1

ncol(r) <- 6

hasValues(r)
[1] FALSE
res(r)

[1] 30 18
dim(r)

[1] 10 6 1
xmax (r)

[1] 0

The function raster also allows you to create a RasterLayer from another object, including another RasterLayer,
RasterStack and RasterBrick, as well as from a SpatialPixels* and SpatialGrid* object (defined in the sp
package), an Extent object, a matrix, an ‘im’ object (SpatStat), and ‘asc’ and ‘kasc’ objects (adehabitat).

It is more common, however, to create a RasterLayer object from a file. The raster package can use raster files
in several formats, including some ‘natively’ supported formats and other formats via the rgdal package. Supported
formats for reading include GeoTTFF, ESRI, ENVI, and ERDAS. Most formats supported for reading can also be written
to. Here is an example using the ‘Meuse’ dataset (taken from the sp package), using a file in the native ‘raster-file’
format:

get the name of an example file installed with the package
do not use this construction of your own files
filename <- system.file("external/test.grd", package="raster'")

filename

[1] "C:/soft/R/R-devel/library/raster/external/test.grd"

r <- raster(filename)

filename (r)

[1] "C:\\soft\\R\\R-devel\\library\\raster\\external\\test.grd"
hasValues(r)

[1] TRUE

inMemory (r)

[1] FALSE

plot(r, main='RasterLayer from file')

8 Chapter 3. Creating Raster* objects

The raster package

RasterLayer from file

=
_
—_
=T
[}
[}
-
=
D —
[}
[}
[}
1500
_
= r w
=g
P — 1000
g
= — 500
=
[}
= [
D —
-
[ap
(]

I I I I I
175000 179000 180000 181000 182000

Multi-layer objects can be created in memory (from RasterLayer objects) or from files.

create three identical RasterLayer objects
rl <- r2 <- r3 <- raster(nrow=10, ncol=10)

Assign random cell values

values(rl) <- runif(ncell(rl))

values(r2) <- runif(ncell(r2))

values(r3) <- runif(ncell(r3))

combine three RasterLayer objects into a RasterStack

s <- stack(rl, r2, r3)

s

class : RasterStack

dimensions : 10, 10, 100, 3 (nrow, ncol, ncell, nlayers)
resolution : 36, 18 (x, y)

extent : -180, 180, -90, 90 (xmin, xmax, ymin, ymax)
crs : +proj=longlat +datum=WGS84 +no_defs

(continues on next page)

The raster package

(continued from previous page)

names : layer.1, layer.2, layer. 3
min values : 0.01307758, 0.02778712, 0.06380247
max values : 0.9926841, 0.9815635, 0.9960774
nlayers(s)

[1] 3

combine three RasterLayer objects into a RasterBrick
bl <- brick(rl, r2, r3)

equivalent to:

b2 <- brick(s)

create a RasterBrick from file

filename <- system.file("external/rlogo.grd", package="raster")
filename

[1] "C:/soft/R/R-devel/library/raster/external/rlogo.grd"

b <- brick(filename)

b

class : RasterBrick

dimensions : 77, 101, 7777, 3 (nrow, ncol, ncell, nlayers)
resolution : 1, 1 (x, y)

extent : 0, 101, 0, 77 (xmin, xmax, ymin, ymax)

crs : +proj=merc +lon_0=0 +k=1 +x_0=0 +y_0=0 +datum=WGS84 +units=m +no_defs
source : rlogo.grd

names : red, green, blue

min values : 0, 0, 0

max values : 255, 255, 255

nlayers(b)

[1] 3

extract a single RasterLayer

r <- raster(b, layer=2)

equivalent to creating it from disk
r <- raster(filename, band=2)

10 Chapter 3. Creating Raster* objects

CHAPTER
FOUR

RASTER ALGEBRA

Many generic functions that allow for simple and elegant raster algebra have been implemented for Raster* objects,
including the normal algebraic operators such as +, -, *, /, logical operators such as >, >=, <, ==, ! } and functions such
as abs, round, ceiling, floor, trunc, sqrt, log, 1log10, exp, cos, sin, max, min, range, prod, sum, any, all.
In these functions you can mix raster objects with numbers, as long as the first argument is a raster object.

create an empty RasterLayer
library(raster)

r <- raster(ncol=10, nrow=10)
assign values to cells
values(r) <- 1l:ncell(r)

s <-r + 10

s <- sqrt(s)

s<-s*r+5

r[] <- runif(ncell(r))

r <- round(r)

r <-r ==

You can also use replacement functions:

s[r] <- -0.5
s[!'r] <- 5
s[s == 5] <- 15

If you use multiple Raster* objects (in functions where this is relevant, such as range), these must have the same
resolution and origin. The origin of a Raster* object is the point closest to (0, 0) that you could get if you moved from
a corners of a Raster* object towards that point in steps of the x and y resolution. Normally these objects would also
have the same extent, but if they do not, the returned object covers the spatial intersection of the objects used.

When you use multiple multi-layer objects with different numbers or layers, the ‘shorter’ objects are ‘recycled’. For
example, if you multuply a 4-layer object (al, a2, a3, a4) with a 2-layer object (b1, b2), the result is a four-layer object
(albl, a2b2, a3bl, a3b2).

r <- raster(ncol=5, nrow=5)

r[] <-1

s <- stack(r, r+l1)

q <- stack(r, r+2, r+4, r+6)

X <-Ir+s+q

X

class : RasterBrick

dimensions : 5, 5, 25, 4 (nrow, ncol, ncell, nlayers)
resolution : 72, 36 (x, y)

(continues on next page)

11

The raster package

(continued from previous page)

extent : -180, 180, -90, 90 (xmin, xmax, ymin, ymax)
crs : +proj=longlat +datum=WGS84 +no_defs

source : memory

names : layer.1, layer.2, layer.3, layer.4

min values : 3, 6, 7, 10

max values : 3, 6, 7, 10

Summary functions (min, max, mean, prod, sum, Median, cv, range, any, all) always return a RasterLayer object.
Perhaps this is not obvious when using functions like min, sum or mean.

a <- mean(r,s,10)

b <- sum(r,s)

st <- stack(r, s, a, b)

sst <- sum(st)

sst

class : RasterLayer

dimensions : 5, 5, 25 (nrow, ncol, ncell)
resolution : 72, 36 (x, y)

extent : -180, 180, -90, 90 (xmin, xmax, ymin, ymax.)
crs : +proj=longlat +datum=WGS84 +no_defs

source ! memory

names : layer

values : 11.5, 11.5 (min, max)

Use cellStats if instead of a RasterLayer you want a single number summarizing the cell values of each layer.

cellStats(st, 'sum')
layer.1.1 layer.1.2 layer.2.1 layer.2.2 layer.3

25.0 25.0 50.0 87.5 100.0
cellStats(sst, 'sum')
[1] 287.5

12 Chapter 4. Raster algebra

CHAPTER
FIVE

HIGH-LEVEL METHODS

Several ‘high level’ methods (functions) have been implemented for RasterLayer objects. ‘High level’ refers to
methods that you would normally find in a GIS program that supports raster data. Here we briefly discuss some of
these. See the help files for more detailed descriptions.

The high-level methods have some arguments in common. The first argument is typically ‘x’ or ‘object’ and can
be a RasterLayer, or, in most cases, a RasterStack or RasterBrick. It is followed by one or more arguments
specific to the method (either additional RasterLayer objects or other arguments), followed by a filename=""" and
“...” arguments.

The default filename is an empty character “”. If you do not specify a filename, the default action for the method is to
return a raster object that only exists in memory. However, if the method deems that the raster object to be created
would be too large to hold memory it is written to a temporary file instead.

The “...” argument allows for setting additional arguments that are relevant when writing values to a file: the file
format, datatype (e.g. integer or real values), and a to indicate whether existing files should be overwritten.

5.1 Modifying a Raster* object

There are several methods that deal with modifying the spatial extent of Raster* objects. The crop method lets you
take a geographic subset of a larger raster object. You can crop a Raster* by providing an extent object or another
spatial object from which an extent can be extracted (objects from classes deriving from Raster and from Spatial in
the sp package). An easy way to get an extent object is to plot a RasterLayer and then use drawExtent to visually
determine the new extent (bounding box) to provide to the crop method.

trim crops a RasterLayer by removing the outer rows and columns that only contain NA values. In contrast, extend
adds new rows and/or columns with NA values. The purpose of this could be to create a new RasterLayer with the
same Extent of another larger RasterLayer such that the can be used together in other methods.

The merge method lets you merge 2 or more Raster* objects into a single new object. The input objects must have
the same resolution and origin (such that their cells neatly fit into a single larger raster). If this is not the case you can
first adjust one of the Raster* objects with use (dis)aggregate or resample.

aggregate and disaggregate} allow for changing the resolution (cell size) of a ~ “Raster®
object. In the case of aggregate, you need to specify a function determining what to do with the
grouped cell values (e.g.mean). It is possible to specify different (dis)aggregation
factors in the x and y direction.aggregateanddisaggregate™ are the best methods when adjusting cells size
only, with an integer step (e.g. each side 2 times smaller or larger), but in some cases that is not possible.

For example, you may need nearly the same cell size, while shifting the cell centers. In those cases, the resample
method can be used. It can do either nearest neighbor assignments (for categorical data) or bilinear interpolation (for
numerical data). Simple linear shifts of a Raster object can be accomplished with the shift method or with the extent
method. resample should not be used to create a Raster* object with much larger resolution. If such adjustments need
to be made then you can first use aggregate.

13

The raster package

With the projectRaster method you can transform values of Raster* object to a new object with a different coor-
dinate reference system.

Here are some simple examples:

library(raster)

r <- raster()

r[] <- l:ncell(r)

ra <- aggregate(r, 10)

rl <- crop(r, extent(-180,0,0,30))

r2 <- crop(r, extent(-10,180,-20,10))

m <- merge(rl, r2, filename='test.grd', overwrite=TRUE)
plot(m)

150
I

100
I

o 35000

= 7 — 30000

=40

7 — 25000

-100
I

=140
I

| | | | | | |
-150 -100 -50 0 50 100 150

bf lets you flip the data (reverse order) in horizontal or vertical direction — typically to correct for a ‘communication
problem’ between different R packages or a misinterpreted file. rotate lets you rotate longitude/latitude rasters that
have longitudes from O to 360 degrees (often used by climatologists) to the standard -180 to 180 degrees system. With
t you can rotate a Raster* object 90 degrees.

14 Chapter 5. High-level methods

The raster package

5.2 Overlay

The overlay method can be used as an alternative to the raster algebra discussed above. Overlay, like the methods
discussed in the following subsections provide either easy to use short-hand, or more efficient computation for large
(file based) objects.

With overlay you can combine multiple Raster objects (e.g. multiply them). The related method mask removes all
values from one layer that are NA in another layer, and cover combines two layers by taking the values of the first layer
except where these are NA.

5.3 Calc

The calc method allows you to do a computation for a single raster object by providing a function. If you sup-
ply a RasterLayer, another RasterLayer is returned. If you provide a multi-layer object you get a (single layer)
RasterLayer if you use a summary type function (e.g. sum) but a RasterBrick if multiple layers are returned.
stackApply computes summary type layers for subsets of a RasterStack or RasterBrick.

5.4 Reclassify

You can use cut or reclassify to replace ranges of values with single values, or subs to substitute (replace) single
values with other values.

r <- raster(ncol=3, nrow=2)

values(r) <- 1l:ncell(r)

getValues(r)

[1] 1 2 3456

s <- calc(r, fun=function(x){ x[x < 4] <- NA; return(x)})
as.matrix(s)

[,11 [,2] [,3]

[1,] NA NA NA

[2,] 4 5 6

t <- overlay(r, s, fun=function(x, y){ x / (2 * sqrt(y)) + 5 })
as.matrix(t)

[,1] [,2] [,3]

[1,] NA NA NA

[2,] 6 6.118034 6.224745

u <- mask(r, t)

as.matrix(u)

[,11 [,2] [,3]

[1,] NA NA NA

[2,] 4 5 6

VvV <- u==s
as.matrix(v)
#i# [,1] [,2] [,3]

[1,] NA NA NA

[2,] TRUE TRUE TRUE

w <- cover(t, r)

as.matrix(w)

[,1] [,2] [,3]
[1,] 1 2.000000 3.000000

(continues on next page)

5.2. Overlay 15

The raster package

(continued from previous page)

[2,] 6 6.118034 6.224745

X <- reclassify(w, c(0,2,1, 2,5,2, 4,10,3))
as.matrix(x)

[,11 [,2]1 [,3]

[1,] 1 1 2

[2,] 3 3 3

y <- subs(x, data.frame(id=c(2,3), v=c(40,50)))
as.matrix(y)

[,11 [,2] [,3]

[1,] NA NA 40

#[2,] 50 50 50

5.5 Focal

The focal method currently only works for (single layer) RasterLayer objects. It uses values in a neighborhood of cells
around a focal cell, and computes a value that is stored in the focal cell of the output RasterLayer. The neighborhood
is a user-defined a matrix of weights and could approximate any shape by giving some cells zero weight. It is possible
to only compute new values for cells that are NA in the input RasterLayer.

5.6 Distance

There are a number of distance related methods. distance computes the shortest distance to cells that are not NA.
pointDistance computes the shortest distance to any point in a set of points. gridDistance computes the dis-
tance when following grid cells that can be traversed (e.g. excluding water bodies). direction computes the direction
towards (or from) the nearest cell that is not NA. adjacency determines which cells are adjacent to other cells, and
pointDistance computes distance between points. See the gdistance package for more advanced distance calcu-
lations (cost distance, resistance distance)

5.7 Spatial configuration

The clump method identifies groups of cells that are connected. boundaries identifies edges, that is, transitions be-
tween cell values. area computes the size of each grid cell (for unprojected rasters), this may be useful to, e.g. compute
the area covered by a certain class on a longitude/latitude raster.

r <- raster(nrow=45, ncol=90)
r[] <- round(runif(ncell(r))*3)
a <- area(r)

zonal(a, r, 'sum')

zone sum

[1,] 0 82236919

[2,] 1 174010878

[3,] 2 167714244

[4,] 3 84469197

16 Chapter 5. High-level methods

The raster package

5.8 Predictions

The package has two methods to make model predictions to (potentially very large) rasters. predict takes a multilayer
raster and a fitted model as arguments. Fitted models can be of various classes, including glm, gam, randomforest,
and brt. method interpolate is similar but is for models that use coordinates as predictor variables, for example in
kriging and spline interpolation.

5.9 Vector to raster conversion

The raster packages supports point, line, and polygon to raster conversion with the rasterize method. For vector
type data (points, lines, polygons), objects of Spatial* classes defined in the sp package are used; but points can also
be represented by a two-column matrix (x and y).

Point to raster conversion is often done with the purpose to analyze the point data. For example to count the number of
distinct species (represented by point observations) that occur in each raster cell. rasterize takes a Raster* object
to set the spatial extent and resolution, and a function to determine how to summarize the points (or an attribute of each
point) by cell.

Polygon to raster conversion is typically done to create a RasterLayer that can act as a mask, i.e. to set to NA a set
of cells of a raster object, or to summarize values on a raster by zone. For example a country polygon is transferred
to a raster that is then used to set all the cells outside that country to NA; whereas polygons representing administrative
regions such as states can be transferred to a raster to summarize raster values by region.

It is also possible to convert the values of a RasterLayer to points or polygons, using rasterToPoints and
rasterToPolygons. Both methods only return values for cells that are not NA. Unlike rasterToPolygons,
rasterToPoints is reasonably efficient and allows you to provide a function to subset the output before it is pro-
duced (which can be necessary for very large rasters as the point object is created in memory).

5.10 Summarize

When used with a Raster® object as first argument, normal summary statistics functions such as min, max and mean
return a RasterLayer. You can use cellStats if, instead, you want to obtain a summary for all cells of a single Raster*
object. You can use freq to make a frequency table, or to count the number of cells with a specified value. Use zonal
to summarize a Raster® object using zones (areas with the same integer number) defined in a RasterLayer and
crosstab to cross-tabulate two RasterLayer objects.

r <- raster(ncol=36, nrow=18)

r[] <- runif(ncell(r))
cellStats(r, mean)

[1] 0.5136419

s=r

s[] <- round(runif(ncell(r)) * 5)
zonal(r, s, 'mean')

zone mean
[1,] 0 0.5214179
[2,] 1 0.5436799
[3,] 2 0.4824496
[4,] 3 0.4949619
[5,] 4 0.5191225
[6,] 5 0.5386785
freq(s)

(continues on next page)

5.8. Predictions 17

The raster package

(continued from previous page)

##
##
##
##
##
##
##

freq(s, value=3)

[1,]
[2,]1
[3,]1
[4,]
[5,]1
[e,1

value count

0
1
2
3
4

5

[1] 142

crosstab(r*3, s)

##

##
##
##
##

53
134
131
142
123

65

layer.2
layer.1 0
0 9 16 28
1 14 42 40
2 21 48 43
3 9 28 20

2

3 4 5
2522 9
48 32 18
42 47 27
27 22 11

18

Chapter 5. High-level methods

CHAPTER
SIX

PLOTTING

Several generic functions have been implemented for Raster* objects to create maps and other plot types. Use ‘plot’ to
create a map of a Raster* object. When plot is used with a RasterLayer, it calls the function ‘rasterImage’ (but, by
default, adds a legend; using code from fields::image.plot). It is also possible to directly call image. You can zoom in
using ‘zoom’ and clicking on the map twice (to indicate where to zoom to). With click it is possible to interactively
query a Raster* object by clicking once or several times on a map plot.

After plotting a RasterLayer you can add vector type spatial data (points, lines, polygons). You can do this with
functions points, lines, polygons if you are using the basic R data structures or plot(object, add=TRUE) if you are using
Spatial* objects as defined in the sp package. When plot is used with a multi-layer Raster* object, all layers are plotted
(up to 16), unless the layers desired are indicated with an additional argument. You can also plot Raster* objects with
spplot. The rasterVis package has several other 1lattice based plotting functions for Raster* objects. rasterVis
also facilitates creating a map from a RasterLayer with the ggplot2 package.

Multi-layer Raster objects can be plotted as individual layers

library(raster)
b <- brick(system.file("external/rlogo.grd", package="raster"))
plot(b)

19

The raster package

red areen

[]

L]
250

[]

@ 200

E 15{
10C

= 50
0

-20

blue

o]

[ka]
250

[

w 200

E 1580
100

& 50
0

[

[

o

| | | | | |
0 20 40 &b 20 100

They can also be combined into a single image, by assigning individual layers to one of the three color channels (red,
green and blue):

plotRGB(b, r=1, g=2, b=3)

20 Chapter 6. Plotting

The raster package

You can also use the a number of other plotting functions with a raster object as argument, including hist, persp,
contour, and density. See the help files for more info.

21

The raster package

22 Chapter 6. Plotting

CHAPTER
SEVEN

WRITING FILES

7.1 File format

Raster can read most, and write several raster file formats, via the rgdal package. However, it directly reads and
writes a native ‘rasterfile’ format. A rasterfile consists of two files: a binary sequential data file and a text header
file. The header file is of the “windows .ini” type. When reading, you do not have to specify the file format, but
you do need to do that when writing (except when using the default native format). This file format is also used
in (http://www.diva-gis.org/){[} DIVA-GIS]. See the help file for function writeRaster or the “Description of the
rasterfile format” vignette.

23

http://www.diva-gis.org/){[}DIVA-GIS

The raster package

24 Chapter 7. Writing files

CHAPTER
EIGHT

CELL-LEVEL FUNCTIONS

8.1 Introduction

The cell number is an important concept in the raster package. Raster data can be thought of as a matrix, but in a
RasterLayer it is more commonly treated as a vector. Cells are numbered from the upper left cell to the upper right
cell and then continuing on the left side of the next row, and so on until the last cell at the lower-right side of the raster.
There are several helper functions to determine the column or row number from a cell and vice versa, and to determine
the cell number for x, y coordinates and vice versa.

library(raster)

r <- raster(ncol=36, nrow=18)
ncol (r)

[1] 36

nrow(r)

[1] 18

ncell(r)

[1] 648
rowFromCell(r, 100)
[1] 3
colFromCell(r, 100)
[1] 28
cellFromRowCol(r,5,5)
[1] 149
xyFromCell(r, 100)

#i# Xy

[1,] 95 65
cellFromXY(r, c(0,0))

[1] 343
colFromX(r, 0)
[1] 19
rowFromY(r, 0)
[1] 10

25

The raster package

8.2 Accessing cell values

Cell values can be accessed with several methods. Use getValues to get all values or a single row; and
getValuesBlock to read a block (rectangle) of cell values.

r <- raster(system.file("external/test.grd", package="raster"))
v <- getValues(r, 50)

v[35:39]

[1] 743.8288 706.2302 646.0078 686.7291 758.0649
getValuesBlock(r, 50, 1, 35, 5)

[1] 743.8288 706.2302 646.0078 686.7291 758.0649

You can also read values using cell numbers or coordinates (xy) using the extract method.

cells <- cellFromRowCol(r, 50, 35:39)

cells

[1] 3955 3956 3957 3958 3959

extract(r, cells)

[1] 743.8288 706.2302 646.0078 686.7291 758.0649
xy <- xyFromCell(r, cells)

Xy

X y

[1,] 179780 332020

[2,] 179820 332020

[3,] 179860 332020

[4,] 179900 332020

[5,] 179940 332020

extract(r, xy)

[1] 743.8288 706.2302 646.0078 686.7291 758.0649

You can also extract values using SpatialPolygons* or SpatialLines*. The default approach for extracting raster values
with polygons is that a polygon has to cover the center of a cell, for the cell to be included. However, you can use
argument “weights=TRUE” in which case you get, apart from the cell values, the percentage of each cell that is covered
by the polygon, so that you can apply, e.g., a “50% area covered” threshold, or compute an area-weighted average.

In the case of lines, any cell that is crossed by a line is included. For lines and points, a cell that is only ‘touched’ is
included when it is below or to the right (or both) of the line segment/point (except for the bottom row and right-most
column).

In addition, you can use standard R indexing to access values, or to replace values (assign new values to cells) in a
raster object. If you replace a value in a raster object based on a file, the connection to that file is lost (because it
now is different from that file). Setting raster values for very large files will be very slow with this approach as each
time a new (temporary) file, with all the values, is written to disk. If you want to overwrite values in an existing file,
you can use update (with caution!)

rlcells]

[1] 743.8288 706.2302 646.0078 686.7291 758.0649

r[l:4]

[1] NA NA NA NA

filename (r)

[1] "C:\\soft\\R\\R-devel\\library\\raster\\external\\test.grd"
r[2:3] <- 10

r[1:4]

[1] NA 10 10 NA

(continues on next page)

26 Chapter 8. Cell-level functions

The raster package

(continued from previous page)

filename(r)
[1] min

Note that in the above examples values are retrieved using cell numbers. That is, a raster is represented as a (one-
dimensional) vector. Values can also be inspected using a (two-dimensional) matrix notation. As for R matrices, the
first index represents the row number, the second the column number.

r[1]

[1] NA

r[2,2]

[1] NA

r[1,]

[1] NA 10 10 NA
[26] NA
[51] NA
[76] NA NA NA NA NA

r[,2]

[1] 10.0000 NA NA NA NA NA NA NA
[9] NA NA NA NA NA NA NA NA
[17] NA NA NA NA NA NA NA NA
[25] NA NA NA NA NA NA NA NA
[33] NA NA NA NA NA NA NA NA
[41] NA NA NA NA NA NA NA NA
[49] NA NA NA NA NA NA NA NA
[57] NA NA NA NA NA NA NA NA
[65] NA NA NA NA NA NA NA NA
[73] NA NA NA NA NA NA NA NA
[81] NA NA NA NA NA NA NA NA
[89] NA NA NA NA 509.6615 504.0837 495.6735 486.9267
[97] 479.6082 474.3188 471.4189 469.5895 468.7051 469.8029 472.0836 474.1420
[105] NA NA NA NA NA NA NA NA
[113] NA NA NA

r[1:3,1:3]

[1] NA 10 10 NA NA NA NA NA NA

keep the matrix structure

r[1:3,1:3, drop=FALSE]

class : RasterLayer

dimensions : 3, 3, 9 (nrow, ncol, ncell)
resolution : 40, 40 (x, y)

extent : 178400, 178520, 333880, 334000 (xmin, xmax, ymin, ymax)

crs ! +proj=sterea +lat_0=52.1561605555556 +lon_0=5.38763888888889 +k=0.
9999079 +x_ 0 155000 +y_0=463000 +datum=WGS84 +units=m +no_defs

source : memory

names : layer

values : 10, 10 (min, max)

Accessing values through this type of indexing should be avoided inside functions as it is less efficient than accessing
values via functions like getValues.

8.2. Accessing cell values 27

The raster package

28 Chapter 8. Cell-level functions

CHAPTER
NINE

MISCELLANEOUS

9.1 Session options

There is a number of session options that influence reading and writing files. These can be set in a session, with
rasterOptions, and saved to make them persistent in between sessions. But you probably should not change the
default values unless you have pressing need to do so. You can, for example, set the directory where temporary files are
written, and set your preferred default file format and data type. Some of these settings can be overwritten by arguments
to functions where they apply (with arguments like filename, datatype, format). Except for generic functions like mean,
‘+’, and sqrt. These functions may write a file when the result is too large to hold in memory and then these options
can only be set through the session options. The options chunksize and maxmemory determine the maximum size (in
number of cells) of a single chunk of values that is read/written in chunk-by-chunk processing of very large files.

library(raster)
rasterOptions()

format : raster
datatype : FLT4S
overwrite : FALSE
progress ! none
timer : FALSE
chunksize : le+08
maxmemory : 5e+09
memfrac : 0.6

tmpdir : c:\temp\Rtmpkjsxébn/raster/
tmptime : 168

setfileext : TRUE
tolerance 0 0.1

standardnames : TRUE
warn depracat.: TRUE
header : none

9.2 Coercion to objects of other classes

Although the raster package defines its own set of classes, it is easy to coerce objects of these classes to objects of the
‘spatial’ family defined in the sp package. This allows for using functions defined by sp (e.g. spplot) and for using other
packages that expect spatial* objects. To create a Raster object from variable n in a SpatialGrid* x use raster(x, n)
or stack(x) or brick(x). Vice versause as(,)

You can also convert objects of class “im” (spatstat) and “asc” (adehabitat) to a RasterLayer and “kasc” (adehabitat)
to a RasterStack or Brick using the raster (x), stack(x) or brick(x) function.

29

The raster package

rl <- raster(ncol=36, nrow=18)

r2 <-ril

values(rl) <- runif(ncell(rl))
values(r2) <- runif(ncell(rl))

s <- stack(rl, r2)

sgdf <- as(s, 'SpatialGridDataFrame')
newr2 <- raster(sgdf, 2)

news <- stack(sgdf)

9.3 Extending raster objects

It is straightforward to build on the Raster* objects using the S4 inheritance mechanism. Say you need objects that
behave like a RasterLayer, but have some additional properties that you need to use in your own functions (S4
methods). See Chambers (2009) and the help pages of the Methods package for more info. Below is an example:

setClass ('myRaster',
contains = 'RasterLayer',
representation (
important = 'data.frame',
essential = 'character'
),
prototype (
important = data.frame(),
essential v

)
r <- raster(nrow=10, ncol=10)

m <- as(r, 'myRaster')

m@important <- data.frame(id=1:10, value=runif(10))

m@essential <- 'my own slot'
values(m) <- 1:ncell(m)

setMethod ('show' , 'myRaster',
function(object) {
callNextMethod(object) # call show(RasterLayer)
cat('essential:', object@essential, '\n')
cat('important information:\n')
print(object@important)
b

class : myRaster
dimensions : 10, 10, 100 (nrow, ncol, ncell)
resolution : 36, 18 (x, y)

extent : -180, 180, -90, 90 (xmin, xmax, ymin, ymax)
crs : +proj=longlat +datum=WGS84 +no_defs
source ! memory

(continues on next page)

30 Chapter 9. Miscellaneous

The raster package

(continued from previous page)

names : layer
values : 1, 100 (min, max)
##

essential: my own slot
important information:

id value
1 1 0.9608613
2 2 0.3111691
3 3 0.8612748
4 4 0.8352472
5 5 0.8221431
6 6 0.5390177
7 7 0.6969546
8 8 0.3095380
9 9 0.1058503
10 10 0.6639418

9.3. Extending raster objects 31

The raster package

32 Chapter 9. Miscellaneous

CHAPTER
TEN

APPENDIX I. WRITING FUNCTIONS FOR LARGE RASTER FILES

10.1 Introduction

The raster package has a number of ‘low-level” functions (e.g. to read and write files) that allow you to write your
own ‘high-level’ functions. Here I explain how to use these low-level functions in developing ‘memory-safe’ high-
level functions. With ‘memory-safe’ I refer to function that can process raster files that are too large to be loaded into
memory. To understand the material discussed in this vignette you should be already somewhat familiar with the raster
package. It is also helpful to have some general knowledge of S4 classes and methods.

I should also note that if you are not sure, you probably do not need to read this vignette, or use the functions described
herein. That is, the high-level functions in the raster package are already based on these techniques, and they are very
flexible. It is likely that you can accomplish your goals with the functions already available in ‘raster’ and that you do
not need to write your own.

10.2 How not to do it

Let’s start with two simple example functions, fl and f2, that are NOT memory safe. The purpose of these simple
example functions is to add a numerical constant ‘a’ to all values of RasterLayer ‘x’.

To test the functions, we create a RasterLayer with 100 cells and values 1 to 100.

library(raster)

r <- raster(ncol=10, nrow=10)
r[] <- 1:100

r

class : RasterLayer

dimensions : 10, 10, 100 (nrow, ncol, ncell)
resolution : 36, 18 (x, y)

extent : -180, 180, -90, 90 (xmin, xmax, ymin, ymax)
crs : +proj=longlat +datum=WGS84 +no_defs

source : memory

names : layer

values : 1, 100 (min, max)

Below is a simple function, f1, that we use to add 5 to all cell values of ‘r’

fl <- function(x, a) {
x@data@values <- x@data@values + a
return(x)

(continues on next page)

33

The raster package

(continued from previous page)

s <- fl1(r, 5)

s

class : RasterLayer

dimensions : 10, 10, 100 (nrow, ncol, ncell)
resolution : 36, 18 (x, y)

extent : -180, 180, -90, 90 (xmin, xmax, ymin, ymax)
crs : +proj=longlat +datum=WGS84 +no_defs

source : memory

names : layer

values : 1, 100 (min, max)

fl is a really bad example. It looks efficient but it has several problems. First of all, the slot x@data@values may
be empty, which is typically the case when a raster object is derived from a file on disk. But even if all values are in
memory the returned object will be invalid. This is because the values of a multiple slots need to be adjusted when
changing values. For example, the returned ‘x’ may still point to a file (now incorrectly, because the values no longer
correspond to it). And the slots with the minimum and maximum cell values have not been updated. While it can be
OK (but normally not necessary) to directly read values of slots, you should not set them directly. The raster package
has functions that set values of slots. This is illustrated in the next example.

f2 <- function(x, a) {
v <- getValues(x)
V <-V +a
x <- setValues(x, V)

return(x)
}
s <- f2(r, 5)
S
class : RasterLayer

dimensions : 10, 10, 100 (nrow, ncol, ncell)
resolution : 36, 18 (x, y)

extent : -180, 180, -90, 90 (xmin, xmax, ymin, ymax)
crs : +proj=longlat +datum=WGS84 +no_defs

source : memory

names : layer

values : 6, 105 (min, max)

2 is much better than f1. Function getValues gets the cell values whether they are on disk or in memory (and will
return NA values if neither is the case). setValues sets the values to the RasterLayer object assuring that other slots
are updated as well.

However, this function could fail when used with very large raster files, depending on the amount of RAM your computer
has and that R can access, because all values are read into memory at once. Processing data in chunks circumvents this
problem.

34 Chapter 10. Appendix I. Writing functions for large raster files

The raster package

10.3 Row by row processing

The next example shows how you can read, process, and write values row by row.

f3 <- function(x, a, filename) {
out <- raster(x)
out <- writeStart(out, filename, overwrite=TRUE)
for (r in 1:nrow(out)) {
v <- getValues(x, r)
V <-V + a
out <- writeValues(out, v, r)

}

s <- f3(r,

S

##
##
##
##
##
##
##
##

}

out <- writeStop(out)

return(out)

class

dimensions :
resolution :
: -180, 180, -90, 90 (xmin, xmax, ymin, ymax)
: +proj=longlat +datum=WGS84 +no_defs

: test.grd

: layer

: 6, 105 (min, max)

extent
crs
source
names
values

5, filename='test')

: RasterLayer

10, 10, 100 (nrow, ncol, ncell)
36, 18 (x, y)

Note how, in the above example, first a new empty RasterLayer, ‘out’ is created using the {bf raster} function. ‘out’
has the same extent and resolution as ‘x’, but it does not have the values of ‘x’.

10.4 Processing multiple rows at once

Row by row processing is easy to do but it can be a bit inefficient because there is some overhead associated with each
read and write operation. An alternative is to read, calculate, and write by block; here defined as a number of rows (1
or more). The function blockSize is a helper function to determine appropriate block size (number of rows).

f4 <- function(x, a, filename) {

out <- raster(x)

bs <- blockSize(out)

out <- writeStart(out, filename, overwrite=TRUE)

for (i in 1:bs$n) {
v <- getValues(x, row=bs$row[i], nrows=bs$nrows[i])
V <-V +a
out <- writeValues(out, v, bs$row[i])

}

}

out <- writeStop(out)

return(out)

s <- f4(r, 5, filename="'test.grd")
blockSize(s)
$row

[1] 1 4 7 10

(continues on next page)

10.3. Row by row processing

35

The raster package

(continued from previous page)

##
##
##
##
##
##

$nrows
[1] 3 3 31

$n
[1] 4

10.5 Filename optional

In the above examples (functions f3 and f4) you must supply a filename. However, in the raster package that is never
the case, it is always optional. If a filename is provided, values are written to disk. If no filename is provided the
values are only written to disk if they cannot be stored in RAM. To determine whether the output needs to be written
to disk, the function canProcessInMemory is used. This function uses the size of the output raster to determine the
total memory size needed. Multiple copies of the values are often made when doing computations. And perhaps you
are combining values from several RasterLayer objects in which case you need to be able to use much more memory
than for the output RasterLayer object alone. To account for this you can supply an additional parameter, indicating the
total number of copies needed. In the examples below we use ‘3’, indicating that we would need RAM to hold three
times the size of the output RasterLayer. That seems reasonably safe in this case.

First an example for row by row processing:

f5 <- function(x, a, filename='"') {

out <- raster(x)
small <- canProcessInMemory(out, 3)
filename <- trim(filename)

if (!small & filename == "') {
filename <- rasterTmpFile()

}

todisk <- FALSE

if (filename != '") {
out <- writeStart(out, filename, overwrite=TRUE)
todisk <- TRUE

} else {
vv <- matrix(ncol=nrow(out), nrow=ncol (out))

}

for (r in 1l:nrow(out)) {
v <- getValues(x, r)
V <-V +a
if (todisk) {
out <- writeValues(out, v, r)
} else {
vvl,r] <- v
}
}
if (todisk) {
out <- writeStop(out)
} else {

(continues on next page)

36

Chapter 10. Appendix I. Writing functions for large raster files

The raster package

(continued from previous page)

out <- setValues(out, as.vector(vv))
3
return(out)

}
s <- £5(r, 5)

Now, the same function, but looping over blocks of multiple rows, instead of a single row at a time (which can make a
function very slow).

f6 <- function(x, a, filename='") {
out <- raster(x)
small <- canProcessInMemory(out, 3)
filename <- trim(filename)

if (! small & filename == "") {
filename <- rasterTmpFile()

}

if (filename != '") {

out <- writeStart(out, filename, overwrite=TRUE)
todisk <- TRUE

} else {
vv <- matrix(ncol=nrow(out), nrow=ncol (out))
todisk <- FALSE

}

bs <- blockSize(r)
for (i in 1:bs$n) {
v <- getValues(x, row=bs$row[i], nrows=bs$nrows[i])
V<-V+a
if (todisk) {
out <- writeValues(out, v, bs$row[i])
} else {
cols <- bsS$row[i]: (bs$row[i]+bs$nrows[i]-1)
vv[,cols] <- matrix(v, nrow=ncol(out))
}
}
if (todisk) {
out <- writeStop(out)
} else {
out <- setValues(out, as.vector(vv))
}
return(out)

}

s <- f6(r, 5)

The next example is an alternative implementation that you might prefer if you wanted to optimize speed when values
can be processed in memory. Optimizing for that situation is generally not that important as it tends to be relatively fast
in any case. Moreover, while the below example is fine, this may not be an ideal approach for more complex functions
as you would have to implement some parts of your algorithm twice. If you are not careful, your function might then
give different results depending on whether the output must be written to disk or not. In other words, debugging and
code maintenance can become more difficult. Having said that, there certainly are cases where processing chuck by
chunk is inefficient, and where avoiding it can be worth the effort.

10.5. Filename optional 37

The raster package

f7 <- function(x, a, filename='"') {

out <- raster(x)
filename <- trim(filename)

if (canProcessInMemory(out, 3)) {
v <- getValues(x) + a
out <- setValues(out, v)
if (filename != '") {
out <- writeRaster(out, filename, overwrite=TRUE)

}
} else {
if (filename == '") {
filename <- rasterTmpFile()
}

out <- writeStart(out, filename)

bs <- blockSize(r)

for (i in 1:bs$n) {
v <- getValues(x, row=bs$row[i], nrows=bs$nrows[i])
V <-V + a
out <- writeValues(out, v, bs$row[i])

}

out <- writeStop(out)
}
return(out)

}

s <- f7(r, 5)

10.6 A complete function

Finally, let’s add some useful bells and whistles. For example, you may want to specify a file format and data type,
be able to overwrite an existing file, and use a progress bar. So far, default values have been used. If you use the
below function, the dots ‘... allow you to change these by providing additional arguments ‘overwrite’, ‘format’, and
‘datatype’. (In all cases you can also set default values with the rasterOptions function).

f8 <- function(x, a, filename='", ...) {

out <- raster(x)

big <- ! canProcessInMemory(out, 3)

filename <- trim(filename)

if (big & filename == "'") {
filename <- rasterTmpFile()

}

if (filename != "") {
out <- writeStart(out, filename, ...)
todisk <- TRUE

} else {
vv <- matrix(ncol=nrow(out), nrow=ncol(out))
todisk <- FALSE

}

(continues on next page)

38 Chapter 10. Appendix I. Writing functions for large raster files

The raster package

(continued from previous page)

bs <- blockSize(x)
pb <- pbCreate(bs$n, ...)

if (todisk) {
for (i in 1:bs$n) {
v <- getValues(x, row=bs$row[i], nrows=bs$nrows[i])
V <-V + a
out <- writeValues(out, v, bsS$row[i])
pbStep(pb, i)
}
out <- writeStop(out)
} else {
for (i in 1:bs$n) {
v <- getValues(x, row=bs$row[i], nrows=bs$nrows[i])
V <- V + a
cols <- bsS$row[i]: (bs$row[i]+bs$nrows[i]-1)
vv[,cols] <- matrix(v, nrow=out@ncols)
pbStep(pb, i)
}
out <- setValues(out, as.vector(vv))
}
pbClose(pb)
return(out)

}
s <- f8(r, 5, filename='test', overwrite=TRUE)

if(require(rgdal)) { # only if rgdal is installed
s <- f8(r, 5, filename='test.tif', format='GTiff', overwrite=TRUE)
}
s
class : RasterLayer
dimensions : 10, 10, 100 (nrow, ncol, ncell)
resolution : 36, 18 (x, y)

extent : -180, 180, -90, 90 (xmin, xmax, ymin, ymax)
crs : +proj=longlat +datum=WGS84 +no_defs

source : test.tif

names ! test

values : 6, 105 (min, max)

Note that most of the additional arguments are passed on to writeStart:
out <- writeStart(out, filename, ...)

Only the progress= argument goes to pbCreate

10.6. A complete function

39

The raster package

10.7 Debugging

Typically functions are developed and tested with small (RasterLayer) objects. But you also need to test your functions
for the case it needs to write values to disk. You can use a very large raster for that, but then you may need to wait a long
time each time you run it. Depending on how you design your function you may be able to test alternate forks in your
function by providing a file name. But this would not necessarily work for function f7. You can force functions of that
type to treat the input as a very large raster by setting to option ‘todisk’ to TRUE as in setOptions(todisk=TRUE). If
that option is set, canProcessInMemory always returns FALSE. This should only be used in debugging.

10.8 Methods

The raster package is build with S4 classes and methods. If you are developing a package that builds on the raster
package I would advise to also use S4 classes and methods. Thus, rather than using plain functions, define generic
methods (where necessary) and implement them for a RasterLayer, as in the example below (the function does not do
anything; replace ‘return(x)’ with something meaningful along the pattern explained above.

if (!isGeneric("£9")) {
setGeneric("f9", function(x, ...)
standardGeneric("£9"))

}
[1] "f9"

setMethod('f9', signature(x='RasterLayer'),

function(x, filename='"', ...) {
return(x)
}
)
s <- f9(r)

10.9 Mutli-core functions

Below is an example of an implementation of a customized raster function that can use multiple processors (cores), via
the snow package. This is still very much under development, but you can try it at your own risk.

First we define a snow cluster enabled function. Below is a simple example:

clusfun <- function(x, filename="", ...) {
out <- raster(x)

cl <- getCluster()
on.exit(returnCluster())

nodes <- length(cl)

bs <- blockSize(x, minblocks=nodes*4)
pb <- pbCreate(bs$n)

(continues on next page)

40 Chapter 10. Appendix I. Writing functions for large raster files

The raster package

(continued from previous page)

the function to be used (simple example)
clFun <- function(i) {
v <- getValues(x, bs$row[i], bs$nrows[i])
for (i in 1l:length(v)) {
v[i] <- v[i] / 100
}
return(v)

}

get all nodes going
for (i in 1:nodes) {

sendCall(cl[[i]], clFun, i, tag=1i)
}

filename <- trim(filename)
if (!canProcessInMemory(out) & filename == "") {
filename <- rasterTmpFile()

}
if (filename != "") {
out <- writeStart(out, filename=filename, ...)
} else {
vv <- matrix(ncol=nrow(out), nrow=ncol (out))
}

for (i in 1:bs$n) {
receive results from a node
d <- recvOneData(cl)

error?
if (! d$value$success) {
stop('cluster error')

}

which block is this?
b <- d$value$tag
cat('received block: ",b,'\n'); flush.console();

if (filename != "") {
out <- writeValues(out, d$value$value, bs$row[b])
} else {

cols <- bs$row[b]: (bs$row[b] + bs$nrows[b]l-1)
vv[,cols] <- matrix(d$value$value, nrow=out@ncols)

}

need to send more data?
ni <- nodes + i
if (ni <= bs$n) {
sendCall(cl[[d$node]], clFun, ni, tag=ni)

}
pbStep(pb)
}
if (filename != "") {

(continues on next page)

10.9. Mutli-core functions

41

The raster package

(continued from previous page)

out <- writeStop(out)
} else {

out <- setValues(out, as.vector(vv))

3
pbClose (pb)

return(out)

To use snow with raster, you need to set up a cluster first, with ‘beginCluster’ (only once during a session). After that

we can run the function:

r <- raster()

beginCluster()
r[] <- ncell(r):1
x <- clusfun(r)
endCluster()

42

Chapter 10. Appendix I. Writing functions for large raster files

CHAPTER
ELEVEN

APPENDIX Il. THE “RASTERFILE” FORMAT

11.1 Introduction

The raster package has a default ‘native’ file format called ‘rasterfile’. This file format is used because it is simple,
flexible and extensible and does not require rgdal, which may be difficult to install. The raster package can read and
write other formats via the rgdal package.

The rasterfile format is highly similar to many other formats used for raster data. It consists of two files. One file
with sequential binary values (filename extention is ‘.gri’), and one header file (filename extension is ‘.grd’). The
main source of variation between such file formats is in the header file, and the contents of the rasterfile header file are
described here.

The purpose is to standardize the format and help others to read and write files of the same format if they wish to do
so. This vignette is aimed at software developers. The typical user of the raster package does not need to be familiar
with it.

11.2 ini files

The header (‘.grd’) file is organized as an ‘.ini’ file. This is a simple database format that is subdivided in sections
indicated with brackets ‘[]’. Within each section there are variables and their values seperated by the equal ‘=" sign.

Thus, .ini files have a layout like this:
[sectionl]
varl=value
var2=value
[section2]
var3=value
var4=value

Variables names must be unique within a section, but the same variable name could occur in multiple sections. This is
not done for raster files (variable names are unique) such that section names could be ignored. The raster package
has a convenient function, readIniFile, to read .ini files.

43

The raster package

11.3 Sections

The rasterfile ini format has four sections (general, georeference, data, legend, description) that are discussed below

11.3.1 general

This section has two variables, ‘creator’ and ‘created’. For example:
[general]

creator=R package 'raster’

created= 2010-03-13 17:26:34

These are metadata that are useful but not strictly required.

11.3.2 georeference

This section has the number of rows (nrows) and columns (ncols), and describes the spatial extent (bounding box)
with four variables (xmin, xmax, ymin, ymax), and the coordinate reference system (projection). These variables are
obviously required.

The number of rows and columns are integers >= 1. The extent variables are numeric with xmin < xmax and ymin <
ymax. The coordinates refer to the extremes of the outer cells (not to the centers of these cells).

Resolution (cell size) is not specified (it should be derived value from the extent and the number of columns and rows).

The coordinate reference system is specified with the variable ‘projection’. Its value should be a string with the PROJ4
syntax. This value can be missing, but that is not recommended!

[georeference]
nrows=100
ncols=100
xmin=-180
ymin=-90
xmax=180
ymax=90

projection=+proj=longlat +datum=WGS84

11.3.3 data

This subsection has information about the file type as well as the cell values. Here is an example
[data]

datatype=FLT4S

nodatavalue=-3.4e+38

byteorder=little

nbands=3

bandorder=BIL

44 Chapter 11. Appendix Il. The “rasterfile” format

The raster package

minvalue=1:0:5
maxvalue=255:200:255

datatype is required. Its values must be one of ‘LOGIS’, ‘INT1S’, ‘INT2S’, ‘INT4S’, ‘INT8S’, ‘INT1U’, ‘INT2U",
‘FLT4S’, ‘FLT8S’. The first three letters indicate the type of number that is stored (logical, integer, or float). The fourth
character determines how many bytes are used to store these. The last letter inidcates, if applicable, whether the values
are singed or not (i.e. whether negative values are possible).

nodatavalue is optional (but necessary if there are nodata (NA) values). It can be any value. But in the raster package
the lowest possible value is used for signed integer and float data types and the highest integer is used for unsigned
integer types (this is to avoid using O as the nodata value).

byteorder is optional but recommended. It should be either ‘big’ or ‘little’. If absent, the raster package assumes that
the platform byte order is used.

nbands is required. It indicates the number of layers (bands) stored in the file and hence its values should be an integer
>= 1. If absent, the raster package assumes it is 1.

bandorder is required if nbands > 1 and ignored when nbands=1. Values can be ‘BIL’ (band interleaved by line),
‘BIP’ (band interleaved by pixel) and ‘BSQ’ (band sequential). BIL is recommended for most cases.

minvalue and maxvalue indicate the minimum or maximum value in the each layer (excluding NA). If there are
mulitple layers, the value are seperated by a colon.

If the values are integers representing a class (e.g. land cover types such as ‘forest’, ‘urban’, ‘agriculture’) four additional
keys are required to indicate that these are categorical data and to provide three columns for a ‘Raster Attribute Table’.
In this case there are three variables (ID, landocver and code). ID refers to the actual cell value, the following are
attributed linked to these values. rattypes describe the data type. ID and would normally be ‘integer’. Other values
allowed are ‘character’ and ‘numerical’. ‘ratvalues’ gives the actual values. For example:

categorical=TRUE
ratnames=ID:landcover:code
rattypes=integer:character:numeric

ratvalues=1:2:3:Pine:0ak:Meadow:12:25:30

11.3.4 description

This section only has the layer names. As above, these are separated by colons. Therefore, colons are not allowed in
the layer names. If they occur, they could be replaced with at dot °.’.

[description]

layername=red:green:blue

11.3. Sections 45

	The raster package
	Classes
	RasterLayer
	RasterStack and RasterBrick
	Other Classes

	Creating Raster* objects
	Raster algebra
	High-level methods
	Modifying a Raster* object
	Overlay
	Calc
	Reclassify
	Focal
	Distance
	Spatial configuration
	Predictions
	Vector to raster conversion
	Summarize

	Plotting
	Writing files
	File format

	Cell-level functions
	Introduction
	Accessing cell values

	Miscellaneous
	Session options
	Coercion to objects of other classes
	Extending raster objects

	Appendix I. Writing functions for large raster files
	Introduction
	How not to do it
	Row by row processing
	Processing multiple rows at once
	Filename optional
	A complete function
	Debugging
	Methods
	Mutli-core functions

	Appendix II. The “rasterfile” format
	Introduction
	ini files
	Sections
	general
	georeference
	data
	description

