
Spatial Data Analysis with R

Robert J. Hijmans

Nov 30, 2023





CONTENTS

1 Introduction 1

2 Scale and distance 3
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Scale and resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Zonation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.4 Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4.1 Distance matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4.2 Distance for longitude/latitude coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Spatial influence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5.1 Adjacency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5.2 Two nearest neighbours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5.3 Weights matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5.4 Spatial influence for polygons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6 Raster based distance metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.6.1 distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.6.2 cost distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.6.3 resistance distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Spatial autocorrelation 17
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 Temporal autocorrelation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.2 Spatial autocorrelation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Example data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Adjacent polygons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4 Compute Moran’s I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Interpolation 31
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Temperature in California . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2.1 9.2 NULL model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.2 proximity polygons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.3 Nearest neighbour interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2.4 Inverse distance weighted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 Calfornia Air Pollution data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3.1 Data preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3.2 Fit a variogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3.3 Ordinary kriging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3.4 Compare with other methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3.5 Cross-validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

i



5 Spatial distribution models 55
5.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.1.1 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.1.2 Predictor variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.1.3 Background data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.1.4 East vs West . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 Fit a model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.2.1 CART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.2.2 Random Forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.3 Predict . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.3.1 Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.3.2 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.4 Extrapolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.5 Climate change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.6 Further reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6 Local regression 83
6.1 California precipitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.2 California House Price Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.3 Summarize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.4 Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.5 Geographicaly Weighted Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.5.1 By county . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.5.2 By grid cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.6 spgwr package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7 Spatial regression models 99
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.2 Reading & aggregating data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.2.1 Get the data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.3 Basic OLS model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.4 Spatial lag model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
7.5 Spatial error model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.6 Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

8 Point pattern analysis 113
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
8.2 Basic statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
8.3 Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
8.4 Distance based measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
8.5 Spatstat package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

ii



CHAPTER

ONE

INTRODUCTION

In this section we introduce a number of approaches and techniques that are commonly used in spatial data analysis
and modelling.

Spatial data are mostly like other data. The same general principles apply. But there are few things that are rather
important to consider when using spatial data that are not common with other data types. These are discussed in
Chapters 2 and 3 and include issues of scale and zonation (the modifiable areal unit problem), distance and spatial
autocorrelation.

The other chapters, introduce methods in different areas of spatial data analysis. These include the three classical area
of spatial statistics (point pattern analysis, regression and inference with spatial data, geostatistics (interpolation using
Kriging), as well some other methods (local and global regression and classification with spatial data).

Some of the material presented here is based on examples in the book “Geographic Information Analysis” by David
O’Sullivan and David J. Unwin. This book provides an excellent and very accessible introduction to spatial data
analysis. It has much more depth than what we present here. But the book does not show how to practically implement
the approaches that are discussed — which is the main purpose of this website.

The spatial statistical methods are treated in much more detail in “Applied Spatial Data Analysis with R” by Bivand,
Pebesma and Gómez-Rubio.

This section builds on our Introduction to Spatial Data Manipulation R, that you should read first.

1

https://www.wiley.com/en-us/Geographic+Information+Analysis%2C+2nd+Edition-p-9780470288573
http://www.asdar-book.org/


Spatial Data Analysis with R

2 Chapter 1. Introduction



CHAPTER

TWO

SCALE AND DISTANCE

2.1 Introduction

Scale, aggregation, and distance are two key concepts in spatial data analysis that can be difficult to come to grips with.
This chapter first discusses scale and related concepts resolution, aggregation and zonation. The second part of the
chapter discusses distance and adjacency.

2.2 Scale and resolution

The term “scale” is tricky. In its narrow geographic sense, it is the the ratio of a distance on a (paper) map to the actual
distance. So if a distance of 1 cm on map “A” represents 100 m in the real world, the map scale is 1/10,000 (1:10,000
or 10-4). If 1 cm on map “B” represents 10 km in the real world, the scale of that map is 1/1,000,000. The first map
“A” would have relatively large scale (and high resolution) as compared to the second map “B”, that would have a small
scale (and low resolution). It follows that if the size maps “A” and “B” were the same, map “B” would represent a much
larger area (would have a much larger “spatial extent”). For that reason, most people would refer to map “B” having a
“larger scale”. That is technically wrong, but there is not much point in fighting that, and it is simply best to avoid the
term “scale”, and certainly “small scale” and “large scale”, because that technically means the opposite of what most
people think. If you want to use these terms, you should probably use them how they are commonly understood; unless
you are among cartographers, of course.

Now that mapping has become a computer based activity, scale is even more treacherous. You can use the same data
to make maps of different sizes. These would all have a different scale. With digital data, we are more interested in the
“inherent” or “measurement” scale of the data. This is sometimes referred to as “grain” but I use “(spatial) resolution”.
In the case of raster data the notion of resolution is straightforward: it is the size of the cells. For vector data resolution
is not as well defined, and it can vary largely within a data set, but you can think of it as the average distance between
the nodes (coordinate pairs) of the lines or polygons. Point data do not have a resolution, unless cases that are within
a certain distance of each other are merged into a single point (the actual geographic objects represented by points,
actually do cover some area; so the actual average size of those areas could also be a measure of interest, but it typically
is not).

In the digital world it is easy to create a “false resolution”, either by dividing raster cells into 4 or more smaller cells, or
by adding nodes in-between nodes of polygons. Imagine having polygons with soils data for a country. Let’s say that
these polygons cover, on average, an area of 100 * 100 = 10,000 km2. You can transfer the soil properties associated
with each polygon, e.g. pH, to a raster with 1 km2 spatial resolution; and now might (incorrectly) say that you have a 1
km2 spatial resolution soils map. So we need to distinguish the resolution of the representation (data) and the resolution
of the measurements or estimates. The lowest of the two is the one that matters.

Why does scale/resolution matter?

First of all, different processes have different spatial and temporal scales at which they operate Levin, 1992 — in this
context, scale refers both to “extent” and “resolution”. Processes that operate over a larger extent (e.g., a forest) can be

3

http://www.esa.org/history/Awards/papers/Levin_SA_MA.pdf


Spatial Data Analysis with R

studied at a larger resolution (trees) whereas processes that operate over a smaller extent (e.g. a tree) may need to be
studied at the level of leaves.

From a practical perspective: it affects our estimates of length and size. For example if you wanted to know the length
of the coastline of Britain, you could use the length of spatial dataset representing that coastline. You could get rather
different numbers depending on the data set used. The higher the resolution of the spatial data, the longer the coastline
would appear to be. This is not just a problem of the representation (the data), also at a theoretical level, one can argue
that the length of the coastline is not defined, as it becomes infinite if your resolution approaches zero. This is illustrated
here

Resolution also affects our understanding of relationships between variables of interest. In terms of data collection this
means that we want data to be at the highest spatial (and temporal) resolution possible (affordable). We can aggregate
our data to lower resolutions, but it is not nearly as easy, or even impossible to correctly disaggregate (“downscale”)
data to a higher resolution.

2.3 Zonation

Geographic data are often aggregated by zones. While we would like to have data at the most granular level that is
possible or meanigful (individuals, households, plots, sites), reality is that we often can only get data that is aggregated.
Rather than having data for individuals, we may have mean values for all inhabitants of a census district. Data on
population, disease, income, or crop yield, is typically available for entire countries, for a number of sub-national units
(e.g. provinces), or a set of raster cells.

The areas used to aggregate data are arbitrary (at least relative to the data of interest). The way the borders of the areas
are drawn (how large, what shape, where) can strongly affect the patterns we see and the outcome of data analysis. This
is sometimes referred to as the “Modifiable Areal Unit Problem” (MAUP). The problem of analyzing aggregated data
is referred to as “Ecological Inference”.

To illustrate the effect of zonation and aggregation, I create a region with 1000 households. For each household we
know where they live and what their annual income is. I then aggregate the data to a set of zones.

The income distribution data

set.seed(0)
xy <- cbind(x=runif(1000, 0, 100), y=runif(1000, 0, 100))
income <- (runif(1000) * abs((xy[,1] - 50) * (xy[,2] - 50))) / 500

Inspect the data, both spatially and non-spatially. The first two plots show that there are many poor people and a few
rich people. The third that there is a clear spatial pattern in where the rich and the poor live.

par(mfrow=c(1,3), las=1)
plot(sort(income), col=rev(terrain.colors(1000)), pch=20, cex=.75, ylab='income')
hist(income, main='', col=rev(terrain.colors(10)), xlim=c(0,5), breaks=seq(0,5,0.5))
plot(xy, xlim=c(0,100), ylim=c(0,100), cex=income, col=rev(terrain.
→˓colors(50))[10*(income+1)])

4 Chapter 2. Scale and distance

http://rspatial.org/cases/2-coastline.html


Spatial Data Analysis with R

Income inequality is often expressed with the Gini coefficient.

n <- length(income)
G <- (2 * sum(sort(income) * 1:n)/sum(income) - (n + 1)) / n
G
## [1] 0.5814548

For our data set the Gini coefficient is 0.581.

Now assume that the household data was grouped by some kind of census districts. I create different districts, in our
case rectangular raster cells, and compute mean income for each district.

library(terra)
## terra 1.7.62
v <- vect(xy)
v$income <- income
r1 <- rast(ncol=1, nrow=4, xmin=0, xmax=100, ymin=0, ymax=100)
r1 <- rasterize(v, r1, "income", mean)

r2 <- rast(ncol=4, nrow=1, xmin=0, xmax=100, ymin=0, ymax=100)
r2 <- rasterize(v, r2, "income", mean)

r3 <- rast(ncol=2, nrow=2, xmin=0, xmax=100, ymin=0, ymax=100)
r3 <- rasterize(v, r3, "income", mean)

r4 <- rast(ncol=3, nrow=3, xmin=0, xmax=100, ymin=0, ymax=100)
r4 <- rasterize(v, r4, "income", mean)

r5 <- rast(ncol=5, nrow=5, xmin=0, xmax=100, ymin=0, ymax=100)
r5 <- rasterize(v, r5, "income", mean)

r6 <- rast(ncol=10, nrow=10, xmin=0, xmax=100, ymin=0, ymax=100)
r6 <- rasterize(v, r6, "income", mean)

Have a look at the plots of the income distribution and the sub-regional averages.

2.3. Zonation 5



Spatial Data Analysis with R

par(mfrow=c(2,3), las=1)
plot(r1); plot(r2); plot(r3); plot(r4); plot(r5); plot(r6)

It is not surprising to see that the smaller the regions get, the better the real pattern is captured. But in all cases,
the histograms show that we do not capture the full income distribution (compare to the histogram with the data for
individuals).

par(mfrow=c(1,3), las=1)
hist(r4, col=rev(terrain.colors(10)), xlim=c(0,5), breaks=seq(0, 5, 0.5))
hist(r5, main="", col=rev(terrain.colors(10)), xlim=c(0,5), breaks=seq(0, 5, 0.5))
hist(r6, main="", col=rev(terrain.colors(10)), xlim=c(0,5), breaks=seq(0, 5, 0.5))

6 Chapter 2. Scale and distance



Spatial Data Analysis with R

2.4 Distance

Distance is a numerical description of how far apart things are. It is the most fundamental concept in geography. After
all, Waldo Tobler’s First Law of Geography states that “everything is related to everything else, but near things are
more related than distant things”. But how far away are things? That is not always as easy a question as it seems. Of
course we can compute distance “as the crow flies” but that is often not relevant. Perhaps you need to also consider
national borders, mountains, or other barriers. The distance between A and B may even by asymetric, meaning that it
the distance from A to B is not the same as from B to A (for example, the President of the United States can call me,
but I cannot call him (or her)); or because you go faster when walking downhill than when waling uphill.

2.4. Distance 7



Spatial Data Analysis with R

2.4.1 Distance matrix

Distances are often described in a “distance matrix”. In a distance matrix we have a number for the distance between
all objects of interest. If the distance is symmetric, we only need to fill half the matrix.

Let’s create a distance matrix from a set of points. We start with a set of points

Set up the data, using x-y coordinates for each point:

A <- c(40, 43)
B <- c(101, 1)
C <- c(111, 54)
D <- c(104, 65)
E <- c(60, 22)
F <- c(20, 2)
pts <- rbind(A, B, C, D, E, F)
pts
## [,1] [,2]
## A 40 43
## B 101 1
## C 111 54
## D 104 65
## E 60 22
## F 20 2

Plot the points and labels:

plot(pts, xlim=c(0,120), ylim=c(0,120), pch=20, cex=2, col='red', xlab='X', ylab='Y',␣
→˓las=1)
text(pts+5, LETTERS[1:6])

8 Chapter 2. Scale and distance



Spatial Data Analysis with R

You can use the dist function to make a distance matrix with a data set of any dimension.

dis <- dist(pts)
dis
## A B C D E
## B 74.06079
## C 71.84706 53.93515
## D 67.67570 64.07027 13.03840
## E 29.00000 46.06517 60.20797 61.52235
## F 45.61798 81.00617 104.80935 105.00000 44.72136

We can check that for the first point using Pythagoras’ theorem.

sqrt((40-101)^2 + (43-1)^2)
## [1] 74.06079

We can transform a distance matrix into a normal matrix.

2.4. Distance 9



Spatial Data Analysis with R

D <- as.matrix(dis)
round(D)
## A B C D E F
## A 0 74 72 68 29 46
## B 74 0 54 64 46 81
## C 72 54 0 13 60 105
## D 68 64 13 0 62 105
## E 29 46 60 62 0 45
## F 46 81 105 105 45 0

Distance matrices are used in all kinds of non-geographical applications. For example, they are often used to create
cluster diagrams (dendograms).

Question 4: Show R code to make a cluster dendogram summarizing the distances between these six sites, and plot it.
See ?hclust.

2.4.2 Distance for longitude/latitude coordinates

Now consider that the values in pts were coordinates in degrees (longitude/latitude). Then the cartesian distance as
computed by the dist function would be incorrect. In that case we can use the pointDistance function from the raster
package.

gdis <- distance(pts, lonlat=TRUE)
gdis
## 1 2 3 4 5
## 2 7614198
## 3 5155577 5946748
## 4 4581656 7104895 1286094
## 5 2976166 5011592 5536367 5737063
## 6 4957298 9013726 9894640 9521864 4859627

Question 5: What is the unit of the values in ``gdis``?

2.5 Spatial influence

An important step in spatial statistics and modelling is to get a measure of the spatial influence between geographic
objects. This can be expressed as a function of adjacency or (inverse) distance, and is often expressed as a spatial
weights matrix. Influence is of course very complex and cannot really be measured and it can be estimated in many
ways. For example the influence between a set of polyongs (countries) can be expressed as having a shared border or
not (being ajacent); as the “crow-fly” distance between their centroids;or as the lengths of a shared border, and in other
ways.

10 Chapter 2. Scale and distance



Spatial Data Analysis with R

2.5.1 Adjacency

Adjacency is an important concept in some spatial analysis. In some cases objects are considered ajacent when they
“touch”, e.g. neighboring countries. In can also be based on distance. This is the most common approach when
analyzing point data.

We create an adjacency matrix for the point data analysed above. We define points as “ajacent” if they are within a
distance of 50 from each other. Given that we have the distance matrix D this is easy to do.

a <- D < 50
a
## A B C D E F
## A TRUE FALSE FALSE FALSE TRUE TRUE
## B FALSE TRUE FALSE FALSE TRUE FALSE
## C FALSE FALSE TRUE TRUE FALSE FALSE
## D FALSE FALSE TRUE TRUE FALSE FALSE
## E TRUE TRUE FALSE FALSE TRUE TRUE
## F TRUE FALSE FALSE FALSE TRUE TRUE

In adjacency matrices the diagonal values are often set to NA (we do not consider a point to be adjacent to itself). And
TRUE/FALSE values are commonly stored as 1/0 (this is equivalent, and we can make this change with a simple trick:
multiplication with 1)

diag(a) <- NA
Adj50 <- a * 1
Adj50
## A B C D E F
## A NA 0 0 0 1 1
## B 0 NA 0 0 1 0
## C 0 0 NA 1 0 0
## D 0 0 1 NA 0 0
## E 1 1 0 0 NA 1
## F 1 0 0 0 1 NA

2.5.2 Two nearest neighbours

What if you wanted to compute the “two nearest neighbours” (or three, or four) adjacency-matrix? Here is how you can
do that. For each row, we first get the column numbers in order of the values in that row (that is, the numbers indicate
how the values are ordered).

cols <- apply(D, 1, order)
# we need to transpose the result
cols <- t(cols)

And then get columns 2 to 3 (why not column 1?)

cols <- cols[, 2:3]
cols
## [,1] [,2]
## A 5 6
## B 5 3
## C 4 2
## D 3 5

(continues on next page)

2.5. Spatial influence 11



Spatial Data Analysis with R

(continued from previous page)

## E 1 6
## F 5 1

As we now have the column numbers, we can make the row-column pairs that we want (rowcols).

rowcols <- cbind(rep(1:6, each=2), as.vector(t(cols)))
head(rowcols)
## [,1] [,2]
## [1,] 1 5
## [2,] 1 6
## [3,] 2 5
## [4,] 2 3
## [5,] 3 4
## [6,] 3 2

We use these pairs as indices to change the values in matrix Ak3.

Ak3 <- Adj50 * 0
Ak3[rowcols] <- 1
Ak3
## A B C D E F
## A NA 0 0 0 1 1
## B 0 NA 1 0 1 0
## C 0 1 NA 1 0 0
## D 0 0 1 NA 1 0
## E 1 0 0 0 NA 1
## F 1 0 0 0 1 NA

2.5.3 Weights matrix

Rather than expressing spatial influence as a binary value (adjacent or not), it is often expressed as a continuous value.
The simplest approach is to use inverse distance (the further away, the lower the value).

W <- 1 / D
round(W, 4)
## A B C D E F
## A Inf 0.0135 0.0139 0.0148 0.0345 0.0219
## B 0.0135 Inf 0.0185 0.0156 0.0217 0.0123
## C 0.0139 0.0185 Inf 0.0767 0.0166 0.0095
## D 0.0148 0.0156 0.0767 Inf 0.0163 0.0095
## E 0.0345 0.0217 0.0166 0.0163 Inf 0.0224
## F 0.0219 0.0123 0.0095 0.0095 0.0224 Inf

Such as “spatial weights” matrix is often “row-normalized”, such that the sum of weights for each row in the matrix is
the same. First we get rid if the Inf values by changing them to NA. (Where did the Inf values come from?)

W[!is.finite(W)] <- NA

Then compute the row sums.

rtot <- rowSums(W, na.rm=TRUE)
# this is equivalent to

(continues on next page)

12 Chapter 2. Scale and distance



Spatial Data Analysis with R

(continued from previous page)

# rtot <- apply(W, 1, sum, na.rm=TRUE)
rtot
## A B C D E F
## 0.09860117 0.08170418 0.13530597 0.13285878 0.11141516 0.07569154

And divide the rows by their totals and check if they row sums add up to 1.

W <- W / rtot
rowSums(W, na.rm=TRUE)
## A B C D E F
## 1 1 1 1 1 1

The values in the columns do not add up to 1.

colSums(W, na.rm=TRUE)
## A B C D E F
## 0.9784548 0.7493803 1.2204900 1.1794393 1.1559273 0.7163082

2.5.4 Spatial influence for polygons

Above we looked at adjacency for a set of points. Here we look at it for polygons. The difference is that

p <- vect(system.file("ex/lux.shp", package="terra"))

We create a “rook’s case” neighbors matrix.

wr <- adjacent(p, "rook", pairs=FALSE)
dim(wr)
## [1] 12 12
wr[1:6,1:11]
## 1 2 3 4 5 6 7 8 9 10 11
## 1 0 1 0 1 1 0 0 0 0 0 0
## 2 1 0 1 1 1 1 0 0 0 0 0
## 3 0 1 0 0 1 0 0 0 1 0 0
## 4 1 1 0 0 0 0 0 0 0 0 0
## 5 1 1 1 0 0 0 0 0 0 0 0
## 6 0 1 0 0 0 0 0 1 0 0 0

Compute the number of neighbors for each area.

i <- rowSums(wr)
i
## 1 2 3 4 5 6 7 8 9 10 11 12
## 3 6 4 2 3 3 3 4 4 3 5 6

Expresses as percentage

round(100 * table(i) / length(i), 1)
## i
## 2 3 4 5 6
## 8.3 41.7 25.0 8.3 16.7

Plot the links between the polygons.

2.5. Spatial influence 13



Spatial Data Analysis with R

par(mai=c(0,0,0,0))
plot(p, col="gray", border="blue")
nb <- adjacent(p, "rook")
v <- centroids(p)
p1 <- v[nb[,1], ]
p2 <- v[nb[,2], ]
lines(p1, p2, col="red", lwd=2)

Now some alternative approaches to compute “spatial influence”.

Distance based:

wd10 <- nearby(v, distance=10000)
wd25 <- nearby(v, distance=25000)

Nearest neighbors:

14 Chapter 2. Scale and distance



Spatial Data Analysis with R

k3 <- nearby(v, k=3)
k6 <- nearby(v, k=6)

And now we plot some using the plotit function.

plotit <- function(nb, lab='') {
plot(p, col='gray', border='white')
v <- centroids(p)
p1 <- v[nb[,1], ,drop=FALSE]
p2 <- v[nb[,2], ,drop=FALSE]
lines(p1, p2, col="red", lwd=2)
text(6.3, 50.1, paste0('(', lab, ')'), cex=1.25)

}

par(mfrow=c(1, 3), mai=c(0,0,0,0))
plotit(nb, "adjacency")
plotit(wd25, "25 km")
plotit(k3, "k=3")

2.6 Raster based distance metrics

2.6.1 distance

2.6.2 cost distance

2.6.3 resistance distance

2.6. Raster based distance metrics 15



Spatial Data Analysis with R

16 Chapter 2. Scale and distance



CHAPTER

THREE

SPATIAL AUTOCORRELATION

3.1 Introduction

Spatial autocorrelation is an important concept in spatial statistics. It is a both a nuisance, as it complicates statistical
tests, and a feature, as it allows for spatial interpolation. Its computation and properties are often misunderstood. This
chapter discusses what it is, and how statistics describing it can be computed.

Autocorrelation (whether spatial or not) is a measure of similarity (correlation) between nearby observations. To
understand spatial autocorrelation, it helps to first consider temporal autocorrelation.

3.1.1 Temporal autocorrelation

If you measure something about the same object over time, for example a persons weight or wealth, it is likely that two
observations that are close to each other in time are also similar in measurement. Say that over a couple of years your
weight went from 50 to 80 kg. It is unlikely that it was 60 kg one day, 50 kg the next and 80 the day after that. Rather it
probably went up gradually, with the occasional tapering off, or even reverse in direction. The same may be true with
your bank account, but that may also have a marked monthly trend. To measure the degree of association over time,
we can compute the correlation of each observation with the next observation.

Let d be a vector of daily observations.

set.seed(0)
d <- sample(100, 10)
d
## [1] 14 68 39 1 34 87 43 100 82 59

Compute auto-correlation.

a <- d[-length(d)]
b <- d[-1]
plot(a, b, xlab='t', ylab='t-1')

17



Spatial Data Analysis with R

cor(a, b)
## [1] 0.1227634

The autocorrelation computed above is very small. Even though this is a random sample, you (almost) never get a value
of zero. We computed the “one-lag” autocorrelation, that is, we compare each value to its immediate neighbour, and
not to other nearby values.

After sorting the numbers in d autocorrelation becomes very strong (unsurprisingly).

d <- sort(d)
d
## [1] 1 14 34 39 43 59 68 82 87 100
a <- d[-length(d)]
b <- d[-1]
plot(a, b, xlab='t', ylab='t-1')

18 Chapter 3. Spatial autocorrelation



Spatial Data Analysis with R

cor(a, b)
## [1] 0.9819258

The acf function shows autocorrelation computed in a slightly different way for several lags (it is 1 to each point it
self, very high when comparing with the nearest neighbour, and than tapering off).

acf(d)

3.1. Introduction 19

http://stats.stackexchange.com/questions/10947/formula-for-autocorrelation-in-r-vs-excel


Spatial Data Analysis with R

3.1.2 Spatial autocorrelation

The concept of spatial autocorrelation is an extension of temporal autocorrelation. It is a bit more complicated though.
Time is one-dimensional, and only goes in one direction, ever forward. Spatial objects have (at least) two dimensions
and complex shapes, and it may not be obvious how to determine what is “near”.

Measures of spatial autocorrelation describe the degree two which observations (values) at spatial locations (whether
they are points, areas, or raster cells), are similar to each other. So we need two things: observations and locations.

Spatial autocorrelation in a variable can be exogenous (it is caused by another spatially autocorrelated variable, e.g. rain-
fall) or endogenous (it is caused by the process at play, e.g. the spread of a disease).

A commonly used statistic that describes spatial autocorrelation is Moran’s I, and we’ll discuss that here in detail. Other
indices include Geary’s C and, for binary data, the join-count index. The semi-variogram also expresses the amount
of spatial autocorrelation in a data set (see the chapter on interpolation).

20 Chapter 3. Spatial autocorrelation



Spatial Data Analysis with R

3.2 Example data

Read the example data

library(terra)
p <- vect(system.file("ex/lux.shp", package="terra"))
p <- p[p$NAME_1=="Diekirch", ]
p$value <- c(10, 6, 4, 11, 6)
as.data.frame(p)
## ID_1 NAME_1 ID_2 NAME_2 AREA POP value
## 1 1 Diekirch 1 Clervaux 312 18081 10
## 2 1 Diekirch 2 Diekirch 218 32543 6
## 3 1 Diekirch 3 Redange 259 18664 4
## 4 1 Diekirch 4 Vianden 76 5163 11
## 5 1 Diekirch 5 Wiltz 263 16735 6

Let’s say we are interested in spatial autocorrelation in variable “AREA”. If there were spatial autocorrelation, regions
of a similar size would be spatially clustered.

Here is a plot of the polygons. I use the coordinates function to get the centroids of the polygons to place the labels.

par(mai=c(0,0,0,0))
plot(p, col=2:7)
xy <- centroids(p)
points(xy, cex=6, pch=20, col='white')
text(p, 'ID_2', cex=1.5)

3.2. Example data 21



Spatial Data Analysis with R

3.3 Adjacent polygons

Now we need to determine which polygons are “near”, and how to quantify that. Here we’ll use adjacency as criterion.
To find adjacent polygons, we can use package ‘spdep’.

w <- adjacent(p, symmetrical=TRUE)
class(w)
## [1] "matrix" "array"
head(w)
## from to
## [1,] 1 2
## [2,] 1 4
## [3,] 1 5
## [4,] 2 3

(continues on next page)

22 Chapter 3. Spatial autocorrelation



Spatial Data Analysis with R

(continued from previous page)

## [5,] 2 4
## [6,] 2 5

summary(w) tells us something about the neighborhood. The average number of neighbors (adjacent polygons) is 2.8,
3 polygons have 2 neighbors and 1 has 4 neighbors (which one is that?).

Let’s have a look at w.

w
## from to
## [1,] 1 2
## [2,] 1 4
## [3,] 1 5
## [4,] 2 3
## [5,] 2 4
## [6,] 2 5
## [7,] 3 5

Question 1:Explain the meaning of the values returned by w

Plot the links between the polygons.

plot(p, col='gray', border='blue', lwd=2)
p1 <- xy[w[,1], ]
p2 <- xy[w[,2], ]
lines(p1, p2, col='red', lwd=2)

3.3. Adjacent polygons 23



Spatial Data Analysis with R

We can also make a spatial weights matrix, reflecting the intensity of the geographic relationship between observations
(see previous chapter).

wm <- adjacent(p, pairs=FALSE)
wm
## 1 2 3 4 5
## 1 0 1 0 1 1
## 2 1 0 1 1 1
## 3 0 1 0 0 1
## 4 1 1 0 0 0
## 5 1 1 1 0 0

24 Chapter 3. Spatial autocorrelation



Spatial Data Analysis with R

3.4 Compute Moran’s I

Now let’s compute Moran’s index of spatial autocorrelation

𝐼 =
𝑛∑︀𝑛

𝑖=1(𝑦𝑖 − 𝑦)2

∑︀𝑛
𝑖=1

∑︀𝑛
𝑗=1 𝑤𝑖𝑗(𝑦𝑖 − 𝑦)(𝑦𝑗 − 𝑦)∑︀𝑛

𝑖=1

∑︀𝑛
𝑗=1 𝑤𝑖𝑗

Yes, that looks impressive. But it is not much more than an expanded version of the formula to compute the correlation
coefficient. The main thing that was added is the spatial weights matrix.

The number of observations

n <- length(p)

Get ‘y’ and ‘ybar’ (the mean value of y)

y <- p$value
ybar <- mean(y)

Now we need

(𝑦𝑖 − 𝑦)(𝑦𝑗 − 𝑦)

That is, (yi-ybar)(yj-ybar) for all pairs. I show two methods to get that.

Method 1:

dy <- y - ybar
g <- expand.grid(dy, dy)
yiyj <- g[,1] * g[,2]

Method 2:

yi <- rep(dy, each=n)
yj <- rep(dy)
yiyj <- yi * yj

Make a matrix of the multiplied pairs

pm <- matrix(yiyj, ncol=n)

And multiply this matrix with the weights to set to zero the value for the pairs that are not adjacent.

pmw <- pm * wm
pmw
## 1 2 3 4 5
## 1 0.00 -3.64 0.00 9.36 -3.64
## 2 -3.64 0.00 4.76 -5.04 1.96
## 3 0.00 4.76 0.00 0.00 4.76
## 4 9.36 -5.04 0.00 0.00 0.00
## 5 -3.64 1.96 4.76 0.00 0.00

We now sum the values, to get this bit of Moran’s I:
𝑛∑︁

𝑖=1

𝑛∑︁
𝑗=1

𝑤𝑖𝑗(𝑦𝑖 − 𝑦)(𝑦𝑗 − 𝑦)

3.4. Compute Moran’s I 25



Spatial Data Analysis with R

spmw <- sum(pmw)
spmw
## [1] 17.04

The next step is to divide this value by the sum of weights. That is easy.

smw <- sum(wm)
sw <- spmw / smw

And compute the inverse variance of y

vr <- n / sum(dy^2)

The final step to compute Moran’s I

MI <- vr * sw
MI
## [1] 0.1728896

This is a simple (but crude) way to estimate the expected value of Moran’s I. That is, the value you would get in the
absence of spatial autocorelation (if the data were spatially random). Of course you never really expect that, but that is
how we do it in statistics. Note that the expected value approaches zero if n becomes large, but that it is not quite zero
for small values of n.

EI <- -1/(n-1)
EI
## [1] -0.25

After doing this ‘by hand’, now let’s use the spdep package to compute Moran’s I and do a significance test. To do this
we first need to create a spatial weights matrix

ww <- adjacent(p, "queen", pairs=FALSE)
ww
## 1 2 3 4 5
## 1 0 1 0 1 1
## 2 1 0 1 1 1
## 3 0 1 0 0 1
## 4 1 1 0 0 0
## 5 1 1 1 0 0

Now we can use the autocor function.

ac <- autocor(p$value, ww, "moran")
ac
## [1] 0.1728896

We can test for significance using Monte Carlo simulation. That is the preferred method (in fact, the only good method).
The way it works that the values are randomly assigned to the polygons, and the Moran’s I is computed. This is repeated
several times to establish a distribution of expected values. The observed value of Moran’s I is then compared with the
simulated distribution to see how likely it is that the observed values could be considered a random draw.

m <- sapply(1:99, function(i) {
autocor(sample(p$value), ww, "moran")

})
hist(m)

26 Chapter 3. Spatial autocorrelation



Spatial Data Analysis with R

pval <- sum(m >= ac) / 100
pval
## [1] 0.04

Question 2: How do you interpret these results (the significance tests)?

We can make a “Moran scatter plot” to visualize spatial autocorrelation. We first get the neighbouring values for each
value.

n <- length(p)
ms <- cbind(id=rep(1:n, each=n), y=rep(y, each=n), value=as.vector(wm * y))

Remove the zeros

ms <- ms[ms[,3] > 0, ]

And compute the average neighbour value

3.4. Compute Moran’s I 27



Spatial Data Analysis with R

ams <- aggregate(ms[,2:3], list(ms[,1]), FUN=mean)
ams <- ams[,-1]
colnames(ams) <- c('y', 'spatially lagged y')
head(ams)
## y spatially lagged y
## 1 10 7.666667
## 2 6 7.750000
## 3 4 6.000000
## 4 11 8.000000
## 5 6 6.666667

Finally, the plot.

plot(ams, pch=20, col="red", cex=2)
reg <- lm(ams[,2] ~ ams[,1])
abline(reg, lwd=2)
abline(h=mean(ams[,2]), lt=2)
abline(v=ybar, lt=2)

28 Chapter 3. Spatial autocorrelation



Spatial Data Analysis with R

Note that the slope of the regression line:

coefficients(reg)[2]
## ams[, 1]
## 0.2315341

has a similar magnitude as Moran’s I.

3.4. Compute Moran’s I 29



Spatial Data Analysis with R

30 Chapter 3. Spatial autocorrelation



CHAPTER

FOUR

INTERPOLATION

4.1 Introduction

Almost any geographic variable of interest has spatial autocorrelation. That can be a problem in statistical tests, but
it is a very useful feature when we want to predict values at locations where no measurements have been made; as
we can generally safely assume that values at nearby locations will be similar. There are several spatial interpolation
techniques. We show some of them in this chapter.

4.2 Temperature in California

We will be working with temperature data for California, USA. If have not yet done so, first install the rspat package
to get the data. You may need to install the remotes package first.

if (!require("rspat")) remotes::install_github('rspatial/rspat')
## Loading required package: rspat
## Loading required package: terra
## terra 1.7.62

Now get the data:

library(rspat)
d <- spat_data('precipitation')
head(d)
## ID NAME LAT LONG ALT JAN FEB MAR APR MAY JUN JUL
## 1 ID741 DEATH VALLEY 36.47 -116.87 -59 7.4 9.5 7.5 3.4 1.7 1.0 3.7
## 2 ID743 THERMAL/FAA AIRPORT 33.63 -116.17 -34 9.2 6.9 7.9 1.8 1.6 0.4 1.9
## 3 ID744 BRAWLEY 2SW 32.96 -115.55 -31 11.3 8.3 7.6 2.0 0.8 0.1 1.9
## 4 ID753 IMPERIAL/FAA AIRPORT 32.83 -115.57 -18 10.6 7.0 6.1 2.5 0.2 0.0 2.4
## 5 ID754 NILAND 33.28 -115.51 -18 9.0 8.0 9.0 3.0 0.0 1.0 8.0
## 6 ID758 EL CENTRO/NAF 32.82 -115.67 -13 9.8 1.6 3.7 3.0 0.4 0.0 3.0
## AUG SEP OCT NOV DEC
## 1 2.8 4.3 2.2 4.7 3.9
## 2 3.4 5.3 2.0 6.3 5.5
## 3 9.2 6.5 5.0 4.8 9.7
## 4 2.6 8.3 5.4 7.7 7.3
## 5 9.0 7.0 8.0 7.0 9.0
## 6 10.8 0.2 0.0 3.3 1.4

Compute annual precipitation

31

/analysis/3-spauto.html


Spatial Data Analysis with R

mnts <- toupper(month.abb)
d$prec <- rowSums(d[, mnts])
plot(sort(d$prec), ylab="Annual precipitation (mm)", las=1, xlab="Stations")

Now make a quick map.

dsp <- vect(d, c("LONG", "LAT"), crs="+proj=longlat +datum=NAD83")
CA <- spat_data("counties")

# define groups for mapping
cuts <- c(0,200,300,500,1000,3000)
# set up a palette of interpolated colors
blues <- colorRampPalette(c('yellow', 'orange', 'blue', 'dark blue'))

plot(CA, col="light gray", lwd=4, border="dark gray")
plot(dsp, "prec", type="interval", col=blues(10), legend=TRUE, cex=2,

(continues on next page)

32 Chapter 4. Interpolation



Spatial Data Analysis with R

(continued from previous page)

breaks=cuts, add=TRUE, plg=list(x=-117.27, y=41.54))
lines(CA)

Transform longitude/latitude to planar coordinates, using the commonly used coordinate reference system for California
(“Teale Albers”) to assure that our interpolation results will align with other data sets we have.

TA <- "+proj=aea +lat_1=34 +lat_2=40.5 +lat_0=0 +lon_0=-120 +x_0=0 +y_0=-4000000␣
→˓+datum=WGS84 +units=m"
dta <- project(dsp, TA)
cata <- project(CA, TA)

4.2. Temperature in California 33



Spatial Data Analysis with R

4.2.1 9.2 NULL model

We are going to interpolate (estimate for unsampled locations) the precipitation values. The simplest way would be
to take the mean of all observations. We can consider that a “Null-model” that we can compare other approaches to.
We’ll use the Root Mean Square Error (RMSE) as evaluation statistic.

RMSE <- function(observed, predicted) {
sqrt(mean((predicted - observed)^2, na.rm=TRUE))

}

Get the RMSE for the Null-model

null <- RMSE(mean(dsp$prec), dsp$prec)
null
## [1] 435.3217

So 435 is our target. Can we do better (have a smaller RMSE)?

4.2.2 proximity polygons

Proximity polygons can be used to interpolate categorical variables. Another term for this is “nearest neighbour”
interpolation.

v <- voronoi(dta)
plot(v)
points(dta)

34 Chapter 4. Interpolation



Spatial Data Analysis with R

Let’s cut out what is not California, and map precipitation.

vca <- crop(v, cata)
plot(vca, "prec")

4.2. Temperature in California 35



Spatial Data Analysis with R

Now we can rasterize the results like this.

r <- rast(vca, res=10000)
vr <- rasterize(vca, r, "prec")
plot(vr)

36 Chapter 4. Interpolation



Spatial Data Analysis with R

And use 5-fold cross-validation to evaluate this model.

set.seed(5132015)
kf <- sample(1:5, nrow(dta), replace=TRUE)

rmse <- rep(NA, 5)
for (k in 1:5) {
test <- dta[kf == k, ]
train <- dta[kf != k, ]
v <- voronoi(train)
p <- extract(v, test)
rmse[k] <- RMSE(test$prec, p$prec)

}
rmse
## [1] 192.0568 203.1304 183.5556 177.5523 205.6921
mean(rmse)
## [1] 192.3974

(continues on next page)

4.2. Temperature in California 37



Spatial Data Analysis with R

(continued from previous page)

# relative model performance
perf <- 1 - (mean(rmse) / null)
round(perf, 3)
## [1] 0.558

Question 1: Describe what each step in the code chunk above does (that is, how does cross-validation work?)

Question 2: How does the proximity-polygon approach compare to the NULL model?

Question 3: You would not typically use proximty polygons for rainfall data. For what kind of data might you use
them?

4.2.3 Nearest neighbour interpolation

Here we do nearest neighbour interpolation considering multiple (5) neighbours.

We can use the gstat package for this. First we fit a model. ~1 means “intercept only”. In the case of spatial data, that
would be only ‘x’ and ‘y’ coordinates are used. We set the maximum number of points to 5, and the “inverse distance
power” idp to zero, such that all five neighbors are equally weighted

library(gstat)
d <- data.frame(geom(dta)[,c("x", "y")], as.data.frame(dta))
head(d)
## x y ID NAME ALT JAN FEB MAR APR MAY JUN
## 1 280058.6 -167265.4 ID741 DEATH VALLEY -59 7.4 9.5 7.5 3.4 1.7 1.0
## 2 355394.7 -480020.3 ID743 THERMAL/FAA AIRPORT -34 9.2 6.9 7.9 1.8 1.6 0.4
## 3 416370.9 -551681.2 ID744 BRAWLEY 2SW -31 11.3 8.3 7.6 2.0 0.8 0.1
## 4 415173.4 -566152.9 ID753 IMPERIAL/FAA AIRPORT -18 10.6 7.0 6.1 2.5 0.2 0.0
## 5 418432.1 -516087.7 ID754 NILAND -18 9.0 8.0 9.0 3.0 0.0 1.0
## 6 405858.6 -567692.3 ID758 EL CENTRO/NAF -13 9.8 1.6 3.7 3.0 0.4 0.0
## JUL AUG SEP OCT NOV DEC prec
## 1 3.7 2.8 4.3 2.2 4.7 3.9 52.1
## 2 1.9 3.4 5.3 2.0 6.3 5.5 52.2
## 3 1.9 9.2 6.5 5.0 4.8 9.7 67.2
## 4 2.4 2.6 8.3 5.4 7.7 7.3 60.1
## 5 8.0 9.0 7.0 8.0 7.0 9.0 78.0
## 6 3.0 10.8 0.2 0.0 3.3 1.4 37.2
gs <- gstat(formula=prec~1, locations=~x+y, data=d, nmax=5, set=list(idp = 0))
nn <- interpolate(r, gs, debug.level=0)
nnmsk <- mask(nn, vr)
plot(nnmsk, 1)

38 Chapter 4. Interpolation



Spatial Data Analysis with R

Again we cross-validate the result. Note that we can use the predict method to get predictions for the locations of the
test points.

rmsenn <- rep(NA, 5)
for (k in 1:5) {
test <- d[kf == k, ]
train <- d[kf != k, ]
gscv <- gstat(formula=prec~1, locations=~x+y, data=train, nmax=5, set=list(idp = 0))
p <- predict(gscv, test, debug.level=0)$var1.pred
rmsenn[k] <- RMSE(test$prec, p)

}
rmsenn
## [1] 215.0993 209.5838 197.0604 177.1946 189.8130
mean(rmsenn)
## [1] 197.7502
1 - (mean(rmsenn) / null)
## [1] 0.5457377

4.2. Temperature in California 39



Spatial Data Analysis with R

4.2.4 Inverse distance weighted

A more commonly used method is “inverse distance weighted” interpolation. The only difference with the nearest
neighbour approach is that points that are further away get less weight in predicting a value a location.

library(gstat)
gs <- gstat(formula=prec~1, locations=~x+y, data=d)
idw <- interpolate(r, gs, debug.level=0)
idwr <- mask(idw, vr)
plot(idwr, 1)

Question 4: IDW generated rasters tend to have a noticeable artefact. What is that and what causes that?

Cross-validate again. We can use predict for the locations of the test points

rmse <- rep(NA, 5)
for (k in 1:5) {

(continues on next page)

40 Chapter 4. Interpolation



Spatial Data Analysis with R

(continued from previous page)

test <- d[kf == k, ]
train <- d[kf != k, ]
gs <- gstat(formula=prec~1, locations=~x+y, data=train)
p <- predict(gs, test, debug.level=0)
rmse[k] <- RMSE(test$prec, p$var1.pred)

}
rmse
## [1] 243.3256 212.6271 206.8982 180.1828 207.5790
mean(rmse)
## [1] 210.1225
1 - (mean(rmse) / null)
## [1] 0.5173166

Question 5: Inspect the arguments used for and make a map of the IDW model below. What other name could you give
to this method (IDW with these parameters)? Why? Illustrate with a map

gs2 <- gstat(formula=prec~1, locations=~x+y, data=d, nmax=1, set=list(idp=1))

4.3 Calfornia Air Pollution data

We use California Air Pollution data to illustrate geostatistcal (Kriging) interpolation.

4.3.1 Data preparation

We use the airqual dataset to interpolate ozone levels for California (averages for 1980-2009). Use the variable OZDLYAV
(unit is parts per billion). Original data source.

Read the data file. To get easier numbers to read, I multiply OZDLYAV with 1000

x <- rspat::spat_data("airqual")
x$OZDLYAV <- x$OZDLYAV * 1000
x <- vect(x, c("LONGITUDE", "LATITUDE"), crs="+proj=longlat +datum=WGS84")

Create a SpatVector and transform to Teale Albers. Note the units=km, which was needed to fit the variogram.

TAkm <- "+proj=aea +lat_1=34 +lat_2=40.5 +lat_0=0 +lon_0=-120 +x_0=0 +y_0=-4000000␣
→˓+datum=WGS84 +units=km"
aq <- project(x, TAkm)

Create an template SpatRaster to interpolate to.

ca <- project(CA, TAkm)
r <- rast(ca)
res(r) <- 10 # 10 km if your CRS's units are in km

4.3. Calfornia Air Pollution data 41

http://www.arb.ca.gov/aqd/aqdcd/aqdcddld.htm


Spatial Data Analysis with R

4.3.2 Fit a variogram

Use gstat to create an emperical variogram ‘v’

p <- data.frame(geom(aq)[, c("x", "y")], as.data.frame(aq))
gs <- gstat(formula=OZDLYAV~1, locations=~x+y, data=p)
v <- variogram(gs, width=20)
v
## np dist gamma dir.hor dir.ver id
## 1 1010 11.35040 34.80579 0 0 var1
## 2 1806 30.63737 47.52591 0 0 var1
## 3 2355 50.58656 67.26548 0 0 var1
## 4 2619 70.10411 80.92707 0 0 var1
## 5 2967 90.13917 88.93653 0 0 var1
## 6 3437 110.42302 84.13589 0 0 var1
## 7 3581 130.07080 80.59402 0 0 var1
## 8 3808 149.75625 97.06451 0 0 var1
## 9 3589 170.13526 102.97593 0 0 var1
## 10 3569 189.70054 108.28135 0 0 var1
## 11 3489 210.01413 107.48915 0 0 var1
## 12 3583 230.17040 101.95520 0 0 var1
## 13 3529 250.22845 103.06846 0 0 var1
## 14 3394 269.58370 103.63122 0 0 var1
## 15 3267 290.04602 108.81122 0 0 var1
## 16 3046 309.73363 107.58961 0 0 var1
## 17 2824 329.92996 109.52365 0 0 var1
## 18 2860 349.91455 104.27218 0 0 var1
## 19 2641 369.71992 94.76248 0 0 var1
## 20 2430 389.97879 107.47451 0 0 var1
## 21 2570 409.87266 102.55504 0 0 var1
## 22 2385 429.90866 101.55894 0 0 var1
## 23 1584 446.54929 105.00524 0 0 var1
plot(v)

42 Chapter 4. Interpolation



Spatial Data Analysis with R

Now, fit a model variogram

fve <- fit.variogram(v, vgm(85, "Exp", 75, 20))
fve
## model psill range
## 1 Nug 21.96600 0.00000
## 2 Exp 85.52957 72.31404
plot(variogramLine(fve, 400), type='l', ylim=c(0,120))
points(v[,2:3], pch=20, col='red')

4.3. Calfornia Air Pollution data 43



Spatial Data Analysis with R

Try a different type (spherical in stead of exponential)

fvs <- fit.variogram(v, vgm(85, "Sph", 75, 20))
fvs
## model psill range
## 1 Nug 25.57019 0.0000
## 2 Sph 72.65881 135.7744
plot(variogramLine(fvs, 400), type='l', ylim=c(0,120) ,col='blue', lwd=2)
points(v[,2:3], pch=20, col='red')

44 Chapter 4. Interpolation



Spatial Data Analysis with R

Both look pretty good in this case.

Another way to plot the variogram and the model

plot(v, fve)

4.3. Calfornia Air Pollution data 45



Spatial Data Analysis with R

4.3.3 Ordinary kriging

Use variogram fve in a kriging interpolation

k <- gstat(formula=OZDLYAV~1, locations=~x+y, data=p, model=fve)
# predicted values
kp <- interpolate(r, k, debug.level=0)
ok <- mask(kp, ca)
names(ok) <- c('prediction', 'variance')
plot(ok)

46 Chapter 4. Interpolation



Spatial Data Analysis with R

4.3.4 Compare with other methods

Let’s use gstat again to do IDW interpolation. The basic approach first.

idm <- gstat(formula=OZDLYAV~1, locations=~x+y, data=p)
idp <- interpolate(r, idm, debug.level=0)
idp <- mask(idp, ca)
plot(idp, 1)

4.3. Calfornia Air Pollution data 47



Spatial Data Analysis with R

We can find good values for the idw parameters (distance decay and number of neighbours) through optimization. For
simplicity’s sake I only do that once here, not k times. The optim function may be a bit hard to grasp at first. But
the essence is simple. You provide a function that returns a value that you want to minimize (or maximize) given a
number of unknown parameters. You also need to provide initial values for these parameters. optim then searches for
the optimal values (for which the function returns the lowest number).

f1 <- function(x, test, train) {
nmx <- x[1]
idp <- x[2]
if (nmx < 1) return(Inf)
if (idp < .001) return(Inf)
m <- gstat(formula=OZDLYAV~1, locations=~x+y, data=train, nmax=nmx, set=list(idp=idp))
p <- predict(m, newdata=test, debug.level=0)$var1.pred
RMSE(test$OZDLYAV, p)

}
set.seed(20150518)
i <- sample(nrow(aq), 0.2 * nrow(aq))

(continues on next page)

48 Chapter 4. Interpolation



Spatial Data Analysis with R

(continued from previous page)

tst <- p[i,]
trn <- p[-i,]
opt <- optim(c(8, .5), f1, test=tst, train=trn)
str(opt)
## List of 5
## $ par : num [1:2] 9.259 0.682
## $ value : num 7.86
## $ counts : Named int [1:2] 35 NA
## ..- attr(*, "names")= chr [1:2] "function" "gradient"
## $ convergence: int 0
## $ message : NULL

Our optimal IDW model

m <- gstat(formula=OZDLYAV~1, locations=~x+y, data=p, nmax=opt$par[1], set=list(idp=opt
→˓$par[2]))
idw <- interpolate(r, m, debug.level=0)
idw <- mask(idw, ca)
plot(idw, 1)

4.3. Calfornia Air Pollution data 49



Spatial Data Analysis with R

And now, for something completely different, a thin plate spline model:

library(fields)
m <- fields::Tps(p[,c("x", "y")], p$OZDLYAV)
tps <- interpolate(r, m)
tps <- mask(tps, idw[[1]])
plot(tps)

50 Chapter 4. Interpolation



Spatial Data Analysis with R

4.3.5 Cross-validation

Cross-validate the three methods (IDW, Ordinary kriging, TPS) and add RMSE weighted ensemble model.

k <- sample(5, nrow(p), replace=TRUE)

ensrmse <- tpsrmse <- krigrmse <- idwrmse <- rep(NA, 5)

for (i in 1:5) {
test <- p[k!=i,]
train <- p[k==i,]
m <- gstat(formula=OZDLYAV~1, locations=~x+y, data=train, nmax=opt$par[1],␣

→˓set=list(idp=opt$par[2]))
p1 <- predict(m, newdata=test, debug.level=0)$var1.pred
idwrmse[i] <- RMSE(test$OZDLYAV, p1)

(continues on next page)

4.3. Calfornia Air Pollution data 51



Spatial Data Analysis with R

(continued from previous page)

m <- gstat(formula=OZDLYAV~1, locations=~x+y, data=train, model=fve)
p2 <- predict(m, newdata=test, debug.level=0)$var1.pred
krigrmse[i] <- RMSE(test$OZDLYAV, p2)

m <- Tps(train[,c("x", "y")], train$OZDLYAV)
p3 <- predict(m, test[,c("x", "y")])
tpsrmse[i] <- RMSE(test$OZDLYAV, p3)

w <- c(idwrmse[i], krigrmse[i], tpsrmse[i])
weights <- w / sum(w)
ensemble <- p1 * weights[1] + p2 * weights[2] + p3 * weights[3]
ensrmse[i] <- RMSE(test$OZDLYAV, ensemble)

}
## Warning:
## Grid searches over lambda (nugget and sill variances) with minima at the endpoints:
## (GCV) Generalized Cross-Validation
## minimum at right endpoint lambda = 1.582376e-07 (eff. df= 89.30001 )
rmi <- mean(idwrmse)
rmk <- mean(krigrmse)
rmt <- mean(tpsrmse)
rms <- c(rmi, rmt, rmk)
rms
## [1] 8.011006 9.120307 7.736301
rme <- mean(ensrmse)
rme
## [1] 7.936466

Question 6: Which method performed best?

We can use the RMSE values to make a weighted ensemble. I use the normalized difference between a model’s RMSE
and the NULL model as weights.

nullrmse <- RMSE(test$OZDLYAV, mean(test$OZDLYAV))
w <- nullrmse - rms
# normalize weights to sum to 1
weights <- ( w / sum(w) )
# check
sum(weights)
## [1] 1
s <- c(idw[[1]], ok[[1]], tps)
ensemble <- sum(s * weights)

And compare maps.

s <- c(idw[[1]], ok[[1]], tps, ensemble)
names(s) <- c("IDW", "OK", "TPS", "Ensemble")
plot(s)

52 Chapter 4. Interpolation



Spatial Data Analysis with R

Question 7: Show where the largest difference exist between IDW and OK.

Question 8: Show the 95% confidence interval of the OK prediction.

4.3. Calfornia Air Pollution data 53



Spatial Data Analysis with R

54 Chapter 4. Interpolation



CHAPTER

FIVE

SPATIAL DISTRIBUTION MODELS

This page shows how you can use the Random Forest algorithm to make spatial predictions. This approach is widely
used, for example to classify remote sensing data into different land cover classes. But here our objective is to predict
the entire range of a species based on a set of locations where it has been observed. As an example, we use the hominid
species Imaginus magnapedum (also known under the vernacular names of “bigfoot” and “sasquatch”). This species
is believed to occur in the United States, but it is so hard to find by scientists that its very existence is commonly denied
by the mainstream media — despite the many reports on Twitter! For more information about this controversy, see the
article by Lozier, Aniello and Hickerson: Predicting the distribution of Sasquatch in western North America: anything
goes with ecological niche modelling.

We will use “citizen-science” data to find out:

a) What the complete range of the species might be.

b) How good (general) our model is by predicting the range of the Eastern sub-species, with data from the Western
sub-species.

c) How climate change might affect its distribution.

In this context, this type of analysis is often referred to as ‘species distribution modeling’ or ‘ecological niche modeling’.
Here is a more in-depth discussion of this technique.

First make sure we have the packages needed:

if (!require("rspat")) remotes::install_github("rspatial/rspat")
## Loading required package: rspat
## Loading required package: terra
## terra 1.7.62
if (!require("predicts")) install.packages("predicts")
## Loading required package: predicts
if (!require("geodata")) install.packages("geodata")
## Loading required package: geodata

5.1 Data

5.1.1 Observations

We get a data set of reported Bigfoot observations

library(terra)
library(rspat)
bf <- spat_data("bigfoot")

(continues on next page)

55

http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2699.2009.02152.x/abstract
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2699.2009.02152.x/abstract


Spatial Data Analysis with R

(continued from previous page)

dim(bf)
## [1] 3092 3
head(bf)
## lon lat Class
## 1 -142.9000 61.50000 A
## 2 -132.7982 55.18720 A
## 3 -132.8202 55.20350 A
## 4 -141.5667 62.93750 A
## 5 -149.7853 61.05950 A
## 6 -141.3165 62.77335 A

It is always good to first plot the locations to see what we are dealing with.

plot(bf[,1:2], cex=0.5, col="red")

library(geodata)
wrld <- geodata::world(path=".")
bnds <- wrld[wrld$NAME_0 %in% c("Canada", "Mexico", "United States"), ]
lines(bnds)

56 Chapter 5. Spatial distribution models



Spatial Data Analysis with R

So the are in Canada and in the United States, but no reports from Mexico, so far.

5.1.2 Predictor variables

Here, as is common in species distribution modeling, we use climate data as predictor variables in our model. Specifi-
cally, we use “bioclimatic variables”, see: https://www.worldclim.org/data/bioclim.html. Here we used a spatial reso-
lution of 10 minutes (one sixt of a degree). That is relatively coarse but it makes the download and processing faster.

wc <- geodata::worldclim_global("bio", res=10, ".")
plot(wc[[c(1, 12)]], nr=2)

5.1. Data 57

https://www.worldclim.org/data/bioclim.html


Spatial Data Analysis with R

Now extract climate data for the locations of our observations. In that way, we can find out what the climate conditions
are that the species likes, apparently.

bfc <- extract(wc, bf[,1:2])
head(bfc, 3)
## ID wc2.1_10m_bio_1 wc2.1_10m_bio_2 wc2.1_10m_bio_3 wc2.1_10m_bio_4
## 1 1 -1.832979 12.504708 28.95899 1152.4308
## 2 2 6.360650 5.865935 32.27475 462.5731
## 3 3 6.360650 5.865935 32.27475 462.5731
## wc2.1_10m_bio_5 wc2.1_10m_bio_6 wc2.1_10m_bio_7 wc2.1_10m_bio_8
## 1 20.34075 -22.840000 43.18075 5.327750
## 2 16.65505 -1.519947 18.17500 3.964495
## 3 16.65505 -1.519947 18.17500 3.964495
## wc2.1_10m_bio_9 wc2.1_10m_bio_10 wc2.1_10m_bio_11 wc2.1_10m_bio_12
## 1 -0.6887083 11.80792 -16.038542 991
## 2 10.4428196 12.28183 1.467686 3079
## 3 10.4428196 12.28183 1.467686 3079

(continues on next page)

58 Chapter 5. Spatial distribution models



Spatial Data Analysis with R

(continued from previous page)

## wc2.1_10m_bio_13 wc2.1_10m_bio_14 wc2.1_10m_bio_15 wc2.1_10m_bio_16
## 1 120 42 31.32536 337
## 2 448 141 35.27518 1127
## 3 448 141 35.27518 1127
## wc2.1_10m_bio_17 wc2.1_10m_bio_18 wc2.1_10m_bio_19
## 1 157 288 216
## 2 468 630 873
## 3 468 630 873

I remove the first column with the ID that we do not need.

bfc <- bfc[,-1]

Now we can plot the species’ distribution in a part of the environmental space. Here is a plot of temperature vs rainfall
of sites where Bigfoot was observed.

plot(bfc[ ,"wc2.1_10m_bio_1"], bfc[, "wc2.1_10m_bio_12"], col="red",
xlab="Annual mean temperature (°C)", ylab="Annual precipitation (mm)")

5.1. Data 59



Spatial Data Analysis with R

5.1.3 Background data

Normally, one would build a model that would compare the values of the predictor variables at the locations where
something was observed, with those values at the locations where it was not observed. But we do not have data from a
systematic survey that determined presence and absence. We have presence-only data. (And, determining absence is
not that simple. You blink and Bigfoot is gone!).

The common approach to deal with these type of data is to not model presence versus absence, but presence versus
“background”. The “background” is the random (or maximum entropy) expectation; it is what you would get if the
species had no preference for any of the predictor variables (or to other variables that are not in the model, but correlated
with the predictor variables).

There is not much point in taking absence data from very far away (tropical Africa or Antarctica). Typically they are
taken from more or less the entire study area for which we have presences data.

To do so, I first get the extent of all points

60 Chapter 5. Spatial distribution models



Spatial Data Analysis with R

ext_bf <- ext(vect(bf[, 1:2])) + 1
ext_bf
## SpatExtent : -157.75, -63.4627, 24.141, 70.5 (xmin, xmax, ymin, ymax)

And then I take 5000 random samples (excluding NA cells) from SpatExtent e, by using it as a “window” (blacking out
all other areas) on the climate SpatRaster.

set.seed(0)
window(wc) <- ext_bf
bg <- spatSample(wc, 5000, "random", na.rm=TRUE, xy=TRUE)
head(bg)
## x y wc2.1_10m_bio_1 wc2.1_10m_bio_2 wc2.1_10m_bio_3
## 1 -99.2500 66.75000 -13.2934895 7.870646 14.96619
## 2 -106.0833 42.08333 5.6722708 14.530958 36.82943
## 3 -111.9167 46.58333 6.7605939 14.135854 35.23372
## 4 -106.9167 54.75000 0.4086979 11.528605 24.43290
## 5 -118.2500 67.08333 -9.1363859 8.185354 16.34505
## 6 -111.2500 38.91667 8.4194584 15.997125 38.84047
## wc2.1_10m_bio_4 wc2.1_10m_bio_5 wc2.1_10m_bio_6 wc2.1_10m_bio_7
## 1 1638.6833 15.42850 -37.16100 52.58950
## 2 894.3715 27.86600 -11.58875 39.45475
## 3 927.7927 28.14375 -11.97650 40.12025
## 4 1290.1088 22.55225 -24.63250 47.18475
## 5 1567.0846 17.46575 -32.61275 50.07850
## 6 904.0610 30.49050 -10.69625 41.18675
## wc2.1_10m_bio_8 wc2.1_10m_bio_9 wc2.1_10m_bio_10 wc2.1_10m_bio_11
## 1 6.484917 -31.617332 7.518209 -31.76942
## 2 9.226916 -4.839750 17.168291 -4.83975
## 3 15.638333 -4.921750 18.186209 -4.92175
## 4 15.417084 -13.864500 15.417084 -16.31392
## 5 8.609292 -21.353209 10.573625 -27.49783
## 6 19.076958 3.179209 19.812834 -2.50475
## wc2.1_10m_bio_12 wc2.1_10m_bio_13 wc2.1_10m_bio_14 wc2.1_10m_bio_15
## 1 171 33 4 70.29919
## 2 288 42 13 38.78144
## 3 293 48 9 53.40759
## 4 471 86 16 58.32499
## 5 223 43 7 61.21693
## 6 228 28 11 32.40370
## wc2.1_10m_bio_16 wc2.1_10m_bio_17 wc2.1_10m_bio_18 wc2.1_10m_bio_19
## 1 90 13 78 13
## 2 112 41 90 41
## 3 129 35 115 35
## 4 220 53 220 56
## 5 108 27 93 29
## 6 83 40 72 44

Instead of using window you could also subset the climate data like this wc <- crop(wc, ext_bf)

Above, with spatSample, I used the argument xy=TRUE to be able to show were these points are from:

plot(bg[, c("x", "y")])

5.1. Data 61



Spatial Data Analysis with R

But we otherwise do not need them so I remove them again,

bg <- bg[, -c(1:2)]

We can now compare the climate of the presence and background points, for example, for temperature and rainfall

plot(bg[,1], bg[,12], xlab="Annual mean temperature (°C)",
ylab="Annual precipitation (mm)", cex=.8)

points(bfc[,1], bfc[,12], col="red", cex=.6, pch="+")
legend("topleft", c("observed", "background"), col=c("red", "black"), pch=c("+", "o"),␣
→˓pt.cex=c(.6, .8))

62 Chapter 5. Spatial distribution models



Spatial Data Analysis with R

So we see that while Bigfoot is widespread, it is not common in cold areas, nor in hot and dry areas.

5.1.4 East vs West

I am first going to split the data into East and West. This is because I believe there are two sub-species (The Eastern
Sasquatch is darker, less hairy, and has more pointy ears). I am principally interested in the western sub-species. Note
how I use the original coordinates to subset the climate data. We can do this because they are in the same order.

#eastern points
bfe <- bfc[bf[,1] > -102, ]
#western points
bfw <- bfc[bf[,1] <= -102, ]

And now I combine the presence (“1”) with the background (“0”) data (I use the same background data for both
subspecies)

5.1. Data 63



Spatial Data Analysis with R

dw <- rbind(cbind(pa=1, bfw), cbind(pa=0, bg))
de <- rbind(cbind(pa=1, bfe), cbind(pa=0, bg))

dw <- data.frame(dw)
de <- data.frame(na.omit(de))

dim(dw)
## [1] 6224 20
dim(de)
## [1] 6866 20

5.2 Fit a model

Now we have the data to fit a model. Let’s first look at a Classification and Regression Trees (CART) model.

5.2.1 CART

library(rpart)
cart <- rpart(pa~., data=dw)

The “complexity parameter” can be used as a stopping parameter to avoid overfitting.

printcp(cart)
##
## Regression tree:
## rpart(formula = pa ~ ., data = dw)
##
## Variables actually used in tree construction:
## [1] wc2.1_10m_bio_10 wc2.1_10m_bio_12 wc2.1_10m_bio_14 wc2.1_10m_bio_18
## [5] wc2.1_10m_bio_19 wc2.1_10m_bio_3 wc2.1_10m_bio_4
##
## Root node error: 983.29/6224 = 0.15798
##
## n= 6224
##
## CP nsplit rel error xerror xstd
## 1 0.322797 0 1.00000 1.00049 0.019357
## 2 0.080521 1 0.67720 0.68995 0.019745
## 3 0.073325 2 0.59668 0.59709 0.015583
## 4 0.068645 3 0.52336 0.53441 0.015405
## 5 0.027920 4 0.45471 0.47035 0.014765
## 6 0.014907 5 0.42679 0.44483 0.015067
## 7 0.010869 6 0.41188 0.43042 0.015332
## 8 0.010197 7 0.40102 0.42283 0.015159
## 9 0.010000 8 0.39082 0.42075 0.015069
plotcp(cart)

64 Chapter 5. Spatial distribution models



Spatial Data Analysis with R

Fit the model again, with fewer splits

cart <- rpart(pa~., data=dw, cp=0.02)

And here is the tree

library(rpart.plot)
rpart.plot(cart, uniform=TRUE, main="Regression Tree")

5.2. Fit a model 65



Spatial Data Analysis with R

Question 1: Describe the environmental conditions that Bigfoot appears to enjoy most?

And now we can use the model to show how attractive the climate is for this species.

x <- predict(wc, cart)
x <- mask(x, wc[[1]])
x <- round(x, 2)
plot(x, type="class", plg=list(x="bottomleft"))

66 Chapter 5. Spatial distribution models



Spatial Data Analysis with R

Notice that there are six values, because the regression tree has six leaves.

5.2.2 Random Forest

CART gives us a nice result to look at that can be easily interpreted (as you just illustrated with your answer to Question
1). But the approach suffers from high variance (meaning that the model tends to be over-fit, it is different each time
a somewhat different datasets are used); and the quality of its predictions suffers from that. Random Forest does not
have that problem as much. Above, with CART, we use regression, let’s do both regression and classification here.

But first I set some points aside for validation (normally we would do k-fold cross-validation, but we keep it simple
here).

set.seed(123)
i <- sample(nrow(dw), 0.2 * nrow(dw))
test <- dw[i,]
train <- dw[-i,]

First we do classification, by making a categorical variable for presence/background.

fpa <- as.factor(train[, 'pa'])

Now fit the RandomForest model

library(randomForest)
## randomForest 4.7-1.1
## Type rfNews() to see new features/changes/bug fixes.
crf <- randomForest(train[, 2:ncol(train)], fpa)
crf
##

(continues on next page)

5.2. Fit a model 67



Spatial Data Analysis with R

(continued from previous page)

## Call:
## randomForest(x = train[, 2:ncol(train)], y = fpa)
## Type of random forest: classification
## Number of trees: 500
## No. of variables tried at each split: 4
##
## OOB estimate of error rate: 7.19%
## Confusion matrix:
## 0 1 class.error
## 0 3832 165 0.04128096
## 1 193 790 0.19633774

The Out-Of-Bag error rate is very small.

The variable importance plot shows which variables are most important in fitting the model. This is computed by
randomizing each variable one by one, and then evaluating the decline in model prediction.

varImpPlot(crf)

68 Chapter 5. Spatial distribution models



Spatial Data Analysis with R

Now we use regression, rather than classification. First we tune a parameter.

trf <- tuneRF(train[, 2:ncol(train)], train[, "pa"])
## Warning in randomForest.default(x, y, mtry = mtryStart, ntree = ntreeTry, : The
## response has five or fewer unique values. Are you sure you want to do
## regression?
## mtry = 6 OOB error = 0.05594974
## Searching left ...
## Warning in randomForest.default(x, y, mtry = mtryCur, ntree = ntreeTry, : The
## response has five or fewer unique values. Are you sure you want to do
## regression?
## mtry = 3 OOB error = 0.05612125
## -0.003065481 0.05
## Searching right ...
## Warning in randomForest.default(x, y, mtry = mtryCur, ntree = ntreeTry, : The
## response has five or fewer unique values. Are you sure you want to do
## regression?

(continues on next page)

5.2. Fit a model 69



Spatial Data Analysis with R

(continued from previous page)

## mtry = 12 OOB error = 0.05485775
## 0.01951734 0.05

trf
## mtry OOBError
## 3 3 0.05612125
## 6 6 0.05594974
## 12 12 0.05485775
mt <- trf[which.min(trf[,2]), 1]
mt
## [1] 12

Question 2: What did tuneRF help us find? What does the values of mt represent?

rrf <- randomForest(train[, 2:ncol(train)], train[, "pa"], mtry=mt, ntree=250)
(continues on next page)

70 Chapter 5. Spatial distribution models



Spatial Data Analysis with R

(continued from previous page)

## Warning in randomForest.default(train[, 2:ncol(train)], train[, "pa"], mtry =
## mt, : The response has five or fewer unique values. Are you sure you want to
## do regression?
rrf
##
## Call:
## randomForest(x = train[, 2:ncol(train)], y = train[, "pa"], ntree = 250, mtry =␣
→˓mt)
## Type of random forest: regression
## Number of trees: 250
## No. of variables tried at each split: 12
##
## Mean of squared residuals: 0.05421534
## % Var explained: 65.78
plot(rrf)

5.2. Fit a model 71



Spatial Data Analysis with R

Question 3: What does ``plot(rrf)`` show us?

5.3 Predict

We can use the model to make predictions to any other place for which we have values for the predictor variables. Our
climate data is global so we could find suitable areas for Bigfoot in Australia, but let’s stick to North America for now.

5.3.1 Regression

rp <- predict(wc, rrf, na.rm=TRUE)
plot(rp)

Note that the regression predictions are well-behaved, in the sense that they are between 0 and 1. However, they are
continuous within that range, and if you wanted presence/absence, you would need a threshold. To get the optimal
threshold, you would normally have a hold out data set, but here I use the training data for simplicity.

library(predicts)
eva <- pa_evaluate(predict(rrf, test[test$pa==1, ]), predict(rrf, test[test$pa==0, ]))
eva
## @stats
## np na prevalence auc cor pcor ODP
## 1 241 1003 0.194 0.965 0.8 0 0.806
##
## @thresholds
## max_kappa max_spec_sens no_omission equal_prevalence equal_sens_spec
## 1 0.447 0.322 0.004 0.195 0.217

(continues on next page)

72 Chapter 5. Spatial distribution models



Spatial Data Analysis with R

(continued from previous page)

##
## @tr_stats
## treshold kappa CCR TPR TNR FPR FNR PPP NPP MCR OR
## 1 0 0 0.19 1 0 1 0 0.19 NaN 0.81 NaN
## 2 0 0.25 0.56 1 0.46 0.54 0 0.31 1 0.44 Inf
## 3 0 0.25 0.56 1 0.46 0.54 0 0.31 1 0.44 Inf
## 4 ... ... ... ... ... ... ... ... ... ... ...
## 594 1 0.05 0.81 0.03 1 0 0.97 1 0.81 0.19 Inf
## 595 1 0.05 0.81 0.03 1 0 0.97 1 0.81 0.19 Inf
## 596 1 0 0.81 0 1 0 1 NaN 0.81 0.19 NaN

We can make a ROC plot

plot(eva, "ROC")

This suggests that the model is (very near) perfect in disinguising presence from background points. This is perhaps

5.3. Predict 73

http://gim.unmc.edu/dxtests/roc2.htm


Spatial Data Analysis with R

better illustrated with these plots:

par(mfrow=c(1,2))
plot(eva, "boxplot")
plot(eva, "density")

To get a good threshold to determine presence/absence and plot the prediction, we can use the “max specificity +
sensitivity” threshold.

tr <- eva@thresholds
tr
## max_kappa max_spec_sens no_omission equal_prevalence equal_sens_spec
## 1 0.4469667 0.3219856 0.00425973 0.1952333 0.2167239
plot(rp > tr$max_spec_sens)

74 Chapter 5. Spatial distribution models



Spatial Data Analysis with R

5.3.2 Classification

We can also use the classification Random Forest model to make a prediction.

rc <- predict(wc, crf, na.rm=TRUE)
plot(rc)

5.3. Predict 75



Spatial Data Analysis with R

They are different because the classification used a threshold of 0.5, which is not necessarily appropriate.

You can get probabilities for the classes (in this case there are 2 classes, presence and absence, and I only plot presence)

rc2 <- predict(wc, crf, type="prob", na.rm=TRUE)
plot(rc2, 2)

76 Chapter 5. Spatial distribution models



Spatial Data Analysis with R

5.4 Extrapolation

Now, let’s see if our model is general enough to predict the distribution of the Eastern species.

eva2 <- pa_evaluate(predict(rrf, de[de$pa==1, ]), predict(rrf, de[de$pa==0, ]))
eva2
## @stats
## np na prevalence auc cor pcor ODP
## 1 1866 5000 0.272 0.561 -0.137 0 0.728
##
## @thresholds
## max_kappa max_spec_sens no_omission equal_prevalence equal_sens_spec
## 1 0.001 0.001 0 0.271 0.001
##
## @tr_stats
## treshold kappa CCR TPR TNR FPR FNR PPP NPP MCR OR
## 1 0 0 0.27 1 0 1 0 0.27 NaN 0.73 NaN
## 2 0 0.02 0.51 0.53 0.5 0.5 0.47 0.28 0.74 0.49 1.12
## 3 0 0.02 0.51 0.53 0.5 0.5 0.47 0.28 0.74 0.49 1.12
## 4 ... ... ... ... ... ... ... ... ... ... ...
## 522 0.99 0 0.73 0 1 0 1 0 0.73 0.27 0
## 523 0.99 0 0.73 0 1 0 1 NaN 0.73 0.27 NaN
## 524 0.99 0 0.73 0 1 0 1 NaN 0.73 0.27 NaN
par(mfrow=c(1,2))
plot(eva2, "ROC")
plot(eva2, "boxplot")

5.4. Extrapolation 77



Spatial Data Analysis with R

By this measure, it is a terrible model – as we already saw on the map. So our model is really good in predicting the
range of the West, but it cannot extrapolate at all to the East.

plot(rc)
points(bf[,1:2], cex=.25)

78 Chapter 5. Spatial distribution models



Spatial Data Analysis with R

Question 4: Why would it be that the model does not extrapolate well?

An important question in the biogeography of the Bigfoot would be if it can survive in other parts of the world (it has
been spotted trying to get on commerical flights leaving North America).

Let’s see.

window(wc) <- NULL
pm <- predict(wc, rrf, na.rm=TRUE)
plot(pm)
lines(wrld)

5.4. Extrapolation 79



Spatial Data Analysis with R

Question 5: What are some countries that should consider Bigfoot as a potential invasive species?

5.5 Climate change

We can also estimate range shifts due to climate change. We can use the same model, but now extrapolate in time (and
space).

fut <- cmip6_world("CNRM-CM6-1", "585", "2061-2080", var="bio", res=10, path=".")
names(fut)
## [1] "bio01" "bio02" "bio03" "bio04" "bio05" "bio06" "bio07" "bio08" "bio09"
## [10] "bio10" "bio11" "bio12" "bio13" "bio14" "bio15" "bio16" "bio17" "bio18"
## [19] "bio19"
names(wc)
## [1] "wc2.1_10m_bio_1" "wc2.1_10m_bio_2" "wc2.1_10m_bio_3" "wc2.1_10m_bio_4"
## [5] "wc2.1_10m_bio_5" "wc2.1_10m_bio_6" "wc2.1_10m_bio_7" "wc2.1_10m_bio_8"
## [9] "wc2.1_10m_bio_9" "wc2.1_10m_bio_10" "wc2.1_10m_bio_11" "wc2.1_10m_bio_12"
## [13] "wc2.1_10m_bio_13" "wc2.1_10m_bio_14" "wc2.1_10m_bio_15" "wc2.1_10m_bio_16"
## [17] "wc2.1_10m_bio_17" "wc2.1_10m_bio_18" "wc2.1_10m_bio_19"
names(fut) <- names(wc)
window(fut) <- ext_bf
pfut <- predict(fut, rrf, na.rm=TRUE)
plot(pfut)

80 Chapter 5. Spatial distribution models



Spatial Data Analysis with R

Question 6: Make a map to show where conditions are improving for western bigfoot, and where they are not. Is the
species headed toward extinction?

5.6 Further reading

More on Species distribution modeling with R.

5.6. Further reading 81



Spatial Data Analysis with R

82 Chapter 5. Spatial distribution models



CHAPTER

SIX

LOCAL REGRESSION

Regression models are typically “global”. That is, all date are used simultaneously to fit a single model. In some
cases it can make sense to fit more flexible “local” models. Such models exist in a general regression framework
(e.g. generalized additive models), where “local” refers to the values of the predictor values. In a spatial context
local refers to location. Rather than fitting a single regression model, it is possible to fit several models, one for
each location (out of possibly very many) locations. This technique is sometimes called “geographically weighted
regression” (GWR). GWR is a data exploration technique that allows to understand changes in importance of different
variables over space (which may indicate that the model used is mis-specified and can be improved).

There are two examples here. One short example with California precipitation data, and than a more elaborate example
with house price data.

6.1 California precipitation

if (!require("rspat")) remotes::install_github('rspatial/rspat')
## Loading required package: rspat
## Loading required package: terra
## terra 1.7.62

library(rspat)
counties <- spat_data("counties")
p <- spat_data("precipitation")
head(p)
## ID NAME LAT LONG ALT JAN FEB MAR APR MAY JUN JUL
## 1 ID741 DEATH VALLEY 36.47 -116.87 -59 7.4 9.5 7.5 3.4 1.7 1.0 3.7
## 2 ID743 THERMAL/FAA AIRPORT 33.63 -116.17 -34 9.2 6.9 7.9 1.8 1.6 0.4 1.9
## 3 ID744 BRAWLEY 2SW 32.96 -115.55 -31 11.3 8.3 7.6 2.0 0.8 0.1 1.9
## 4 ID753 IMPERIAL/FAA AIRPORT 32.83 -115.57 -18 10.6 7.0 6.1 2.5 0.2 0.0 2.4
## 5 ID754 NILAND 33.28 -115.51 -18 9.0 8.0 9.0 3.0 0.0 1.0 8.0
## 6 ID758 EL CENTRO/NAF 32.82 -115.67 -13 9.8 1.6 3.7 3.0 0.4 0.0 3.0
## AUG SEP OCT NOV DEC
## 1 2.8 4.3 2.2 4.7 3.9
## 2 3.4 5.3 2.0 6.3 5.5
## 3 9.2 6.5 5.0 4.8 9.7
## 4 2.6 8.3 5.4 7.7 7.3
## 5 9.0 7.0 8.0 7.0 9.0
## 6 10.8 0.2 0.0 3.3 1.4

plot(counties)
points(p[,c("LONG", "LAT")], col="red", pch=20)

83



Spatial Data Analysis with R

Compute annual average precipitation

p$pan <- rowSums(p[,6:17])

Global regression model

m <- lm(pan ~ ALT, data=p)
m
##
## Call:
## lm(formula = pan ~ ALT, data = p)
##
## Coefficients:
## (Intercept) ALT
## 523.60 0.17

Create a SpatVector objects with a planar crs.

84 Chapter 6. Local regression



Spatial Data Analysis with R

alb <- "+proj=aea +lat_1=34 +lat_2=40.5 +lat_0=0 +lon_0=-120 +x_0=0 +y_0=-4000000␣
→˓+datum=WGS84 +units=m"
sp <- vect(p, c("LONG", "LAT"), crs="+proj=longlat +datum=WGS84")
spt <- project(sp, alb)
ctst <- project(counties, alb)

Get the optimal bandwidth

library( spgwr )
## Loading required package: sp
## Loading required package: spData
## To access larger datasets in this package, install the spDataLarge
## package with: `install.packages('spDataLarge',
## repos='https://nowosad.github.io/drat/', type='source')`
## NOTE: This package does not constitute approval of GWR
## as a method of spatial analysis; see example(gwr)
bw <- gwr.sel(pan ~ ALT, data=as.data.frame(spt), coords=geom(spt)[,c("x", "y")])
## Bandwidth: 526221.1 CV score: 64886883
## Bandwidth: 850593.6 CV score: 74209073
## Bandwidth: 325747.9 CV score: 54001118
## Bandwidth: 201848.6 CV score: 44611213
## Bandwidth: 125274.7 CV score: 35746320
## Bandwidth: 77949.39 CV score: 29181737
## Bandwidth: 48700.74 CV score: 22737197
## Bandwidth: 30624.09 CV score: 17457161
## Bandwidth: 19452.1 CV score: 15163436
## Bandwidth: 12547.43 CV score: 19452191
## Bandwidth: 22792.75 CV score: 15512988
## Bandwidth: 17052.67 CV score: 15709960
## Bandwidth: 20218.99 CV score: 15167438
## Bandwidth: 19767.99 CV score: 15156913
## Bandwidth: 19790.05 CV score: 15156906
## Bandwidth: 19781.39 CV score: 15156902
## Bandwidth: 19781.48 CV score: 15156902
## Bandwidth: 19781.47 CV score: 15156902
## Bandwidth: 19781.47 CV score: 15156902
## Bandwidth: 19781.47 CV score: 15156902
## Bandwidth: 19781.47 CV score: 15156902
bw
## [1] 19781.47

Create a regular set of points to estimate parameters for.

r <- rast(ctst, res=10000)
r <- rasterize(ctst, r)
newpts <- as.points(r)

Run the gwr function

g <- gwr(pan ~ ALT, data=as.data.frame(spt), coords=geom(spt)[,c("x", "y")],␣
→˓bandwidth=bw, fit.points=geom(newpts)[,c("x", "y")])
g
## Call:

(continues on next page)

6.1. California precipitation 85



Spatial Data Analysis with R

(continued from previous page)

## gwr(formula = pan ~ ALT, data = as.data.frame(spt), coords = geom(spt)[,
## c("x", "y")], bandwidth = bw, fit.points = geom(newpts)[,
## c("x", "y")])
## Kernel function: gwr.Gauss
## Fixed bandwidth: 19781.47
## Fit points: 4090
## Summary of GWR coefficient estimates at fit points:
## Min. 1st Qu. Median 3rd Qu. Max.
## X.Intercept. -846.314308 77.986476 328.579339 729.588996 3452.1972
## ALT -3.961701 0.034149 0.201568 0.418716 4.6022

Link the results back to the raster

slope <- intercept <- r
slope[!is.na(slope)] <- g$SDF$ALT
intercept[!is.na(intercept)] <- g$SDF$'(Intercept)'
s <- c(intercept, slope)
names(s) <- c('intercept', 'slope')
plot(s)

86 Chapter 6. Local regression



Spatial Data Analysis with R

6.2 California House Price Data

We will use house prices data from the 1990 census, taken from “Pace, R.K. and R. Barry, 1997. Sparse Spatial
Autoregressions. Statistics and Probability Letters 33: 291-297.”

houses <- spat_data("houses1990.csv")
dim(houses)
## [1] 20640 9
head(houses)
## houseValue income houseAge rooms bedrooms population households latitude
## 1 452600 8.3252 41 880 129 322 126 37.88
## 2 358500 8.3014 21 7099 1106 2401 1138 37.86
## 3 352100 7.2574 52 1467 190 496 177 37.85
## 4 341300 5.6431 52 1274 235 558 219 37.85
## 5 342200 3.8462 52 1627 280 565 259 37.85
## 6 269700 4.0368 52 919 213 413 193 37.85
## longitude
## 1 -122.23
## 2 -122.22
## 3 -122.24
## 4 -122.25
## 5 -122.25
## 6 -122.25

Each record represents a census “blockgroup”. The longitude and latitude of the centroids of each block group are
available. We can use that to make a map and we can also use these to link the data to other spatial data. For example
to get county-membership of each block group. To do that, let’s first turn this into a SpatialPointsDataFrame to find
out to which county each point belongs.

hvect <- vect(houses, c("longitude", "latitude"))

plot(hvect, cex=0.5, pch=1, axes=TRUE)

6.2. California House Price Data 87



Spatial Data Analysis with R

Now get the county boundaries and assign CRS of the houses data matches that of the counties (because they are both
in longitude/latitude!).

crs(hvect) <- crs(counties)

Do a spatial query (points in polygon)

cnty <- extract(counties, hvect)
head(cnty)
## id.y STATE COUNTY NAME LSAD LSAD_TRANS
## 1 1 06 001 Alameda 06 County
## 2 2 06 001 Alameda 06 County
## 3 3 06 001 Alameda 06 County
## 4 4 06 001 Alameda 06 County
## 5 5 06 001 Alameda 06 County
## 6 6 06 001 Alameda 06 County

88 Chapter 6. Local regression



Spatial Data Analysis with R

6.3 Summarize

We can summarize the data by county. First combine the extracted county data with the original data.

hd <- cbind(data.frame(houses), cnty)

Compute the population by county

totpop <- tapply(hd$population, hd$NAME, sum)
totpop
## Alameda Alpine Amador Butte Calaveras
## 1241779 1113 30039 182120 31998
## Colusa Contra Costa Del Norte El Dorado Fresno
## 16275 799017 16045 128624 662261
## Glenn Humboldt Imperial Inyo Kern
## 24798 116418 108633 18281 528995
## Kings Lake Lassen Los Angeles Madera
## 91842 50631 27214 8721937 88089
## Marin Mariposa Mendocino Merced Modoc
## 204241 14302 75061 176457 9678
## Mono Monterey Napa Nevada Orange
## 9956 342314 108030 78510 2340204
## Placer Plumas Riverside Sacramento San Benito
## 170761 19739 1162787 1038540 36697
## San Bernardino San Diego San Francisco San Joaquin San Luis Obispo
## 1409740 2425153 683068 477184 203764
## San Mateo Santa Barbara Santa Clara Santa Cruz Shasta
## 614816 335177 1486054 216732 147036
## Sierra Siskiyou Solano Sonoma Stanislaus
## 3318 43531 337429 385296 370821
## Sutter Tehama Trinity Tulare Tuolumne
## 63689 49625 13063 309073 48456
## Ventura Yolo Yuba
## 649935 138799 58954

Income is harder because we have the median household income by blockgroup. But it can be approximated by first
computing total income by blockgroup, summing that, and dividing that by the total number of households.

# total income
hd$suminc <- hd$income * hd$households
# now use aggregate (similar to tapply)
csum <- aggregate(hd[, c('suminc', 'households')], list(hd$NAME), sum)
# divide total income by number of housefholds
csum$income <- 10000 * csum$suminc / csum$households
# sort
csum <- csum[order(csum$income), ]
head(csum)
## Group.1 suminc households income
## 53 Trinity 11198.985 5156 21720.30
## 58 Yuba 43739.708 19882 21999.65
## 25 Modoc 8260.597 3711 22259.76
## 47 Siskiyou 38769.952 17302 22407.79
## 17 Lake 47612.899 20805 22885.32

(continues on next page)

6.3. Summarize 89



Spatial Data Analysis with R

(continued from previous page)

## 11 Glenn 20497.683 8821 23237.37
tail(csum)
## Group.1 suminc households income
## 56 Ventura 994094.8 210418 47243.81
## 7 Contra Costa 1441734.6 299123 48198.72
## 30 Orange 3938638.1 800968 49173.48
## 43 Santa Clara 2621895.6 518634 50553.87
## 41 San Mateo 1169145.6 230674 50683.89
## 21 Marin 436808.4 85869 50869.17

6.4 Regression

Before we make a regression model, let’s first add some new variables that we might use, and then see if we can build a
regression model with house price as dependent variable. The authors of the paper used a lot of log tranforms, so you
can also try that.

hd$roomhead <- hd$rooms / hd$population
hd$bedroomhead <- hd$bedrooms / hd$population
hd$hhsize <- hd$population / hd$households

Ordinary least squares regression:

# OLS
m <- glm( houseValue ~ income + houseAge + roomhead + bedroomhead + population, data=hd)
summary(m)
##
## Call:
## glm(formula = houseValue ~ income + houseAge + roomhead + bedroomhead +
## population, data = hd)
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -6.508e+04 2.533e+03 -25.686 < 2e-16 ***
## income 5.179e+04 3.833e+02 135.092 < 2e-16 ***
## houseAge 1.832e+03 4.575e+01 40.039 < 2e-16 ***
## roomhead -4.720e+04 1.489e+03 -31.688 < 2e-16 ***
## bedroomhead 2.648e+05 6.820e+03 38.823 < 2e-16 ***
## population 3.947e+00 5.081e-01 7.769 8.27e-15 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 6022427437)
##
## Null deviance: 2.7483e+14 on 20639 degrees of freedom
## Residual deviance: 1.2427e+14 on 20634 degrees of freedom
## AIC: 523369
##
## Number of Fisher Scoring iterations: 2
coefficients(m)
## (Intercept) income houseAge roomhead bedroomhead

(continues on next page)

90 Chapter 6. Local regression



Spatial Data Analysis with R

(continued from previous page)

## -65075.701407 51786.005862 1831.685266 -47198.908765 264766.186284
## population
## 3.947461

6.5 Geographicaly Weighted Regression

6.5.1 By county

Of course we could make the model more complex, with e.g. squared income, and interactions. But let’s see if we can
do Geographically Weighted regression. One approach could be to use counties.

First I remove records that were outside the county boundaries

hd2 <- hd[!is.na(hd$NAME), ]

Then I write a function to get what I want from the regression (the coefficients in this case)

regfun <- function(x) {
dat <- hd2[hd2$NAME == x, ]
m <- glm(houseValue~income+houseAge+roomhead+bedroomhead+population, data=dat)
coefficients(m)

}

And now run this for all counties using sapply:

countynames <- unique(hd2$NAME)
res <- sapply(countynames, regfun)

Plot of a single coefficient

dotchart(sort(res["income", ]), cex=0.65)

6.5. Geographicaly Weighted Regression 91



Spatial Data Analysis with R

92 Chapter 6. Local regression



Spatial Data Analysis with R

There clearly is variation in the coefficient (𝑏𝑒𝑡𝑎) for income. How does this look on a map?

First make a data.frame of the results

resdf <- data.frame(NAME=colnames(res), t(res))
head(resdf)
## NAME X.Intercept. income houseAge roomhead
## Alameda Alameda -62373.62 35842.330 591.1001 24147.3182
## Contra Costa Contra Costa -61759.84 43668.442 465.8897 -356.6085
## Alpine Alpine -77605.93 40850.588 5595.4113 NA
## Amador Amador 120480.71 3234.519 -771.5857 37997.0069
## Butte Butte 50935.36 15577.745 -380.5824 9078.9315
## Calaveras Calaveras 91364.72 7126.668 -929.4065 16843.3456
## bedroomhead population
## Alameda 129814.33 8.0570859
## Contra Costa 150662.89 0.8869663
## Alpine NA NA
## Amador -194176.65 0.9971630
## Butte -32272.68 5.7707597
## Calaveras -78749.86 8.8865713

Fix the counties object. There are too many counties because of the presence of islands. I first aggregate (‘dissolve’ in
GIS-speak’) the counties such that a single county becomes a single (multi-)polygon.

dim(counties)
## [1] 68 5
dcounties <- aggregate(counties[, "NAME"], "NAME")
dim(dcounties)
## [1] 58 2

Now we can merge this SpatVector with the data.frame with the regression results.

cnres <- merge(dcounties, resdf, by="NAME")
plot(cnres, "income")

6.5. Geographicaly Weighted Regression 93



Spatial Data Analysis with R

To show all parameters in a ‘conditioning plot’, we need to first scale the values to get similar ranges.

# a copy of the data
cnres2 <- cnres

# scale all variables, except the first one (county name)
values(cnres2) <- as.data.frame(scale(as.data.frame(cnres)[,-1]))
plot(cnres2, names(cnres2)[1:6], plg=list(x="topright"), mar=c(1,1,1,1))

94 Chapter 6. Local regression



Spatial Data Analysis with R

Is this just random noise, or is there spatial autocorrelation?

lw <- adjacent(cnres2, pairs=FALSE)
autocor(cnres$income, lw)
## [1] 0.1565227
autocor(cnres$houseAge, lw)
## [1] -0.02057022

6.5.2 By grid cell

An alternative approach would be to compute a model for grid cells. Let’s use the ‘Teale Albers’ projection (often used
when mapping the entire state of California).

TA <- "+proj=aea +lat_1=34 +lat_2=40.5 +lat_0=0 +lon_0=-120 +x_0=0 +y_0=-4000000␣
→˓+datum=WGS84 +units=m"
countiesTA <- project(counties, TA)

Create a SpatRaster using the extent of the counties, and setting an arbitrary resolution of 50 by 50 km cells

r <- rast(countiesTA)
res(r) <- 50000

Get the xy coordinates for each raster cell:

xy <- xyFromCell(r, 1:ncell(r))

For each cell, we need to select a number of observations, let’s say within 50 km of the center of each cell (thus the
data that are used in different cells overlap). And let’s require at least 50 observations to do a regression.

First transform the houses data to Teale-Albers

6.5. Geographicaly Weighted Regression 95



Spatial Data Analysis with R

housesTA <- project(hvect, TA)
crds <- geom(housesTA)[, c("x", "y")]

Set up a new regression function.

regfun2 <- function(d) {
m <- glm(houseValue~income+houseAge+roomhead+bedroomhead+population, data=d)
coefficients(m)
}

Run the model for al cells if there are at least 50 observations within a radius of 50 km.

res <- list()
for (i in 1:nrow(xy)) {

d <- sqrt((xy[i,1]-crds[,1])^2 + (xy[i,2]-crds[,2])^2)
j <- which(d < 50000)
if (length(j) > 49) {

d <- hd[j,]
res[[i]] <- regfun2(d)

} else {
res[[i]] <- NA

}
}

For each cell get the income coefficient:

inc <- sapply(res, function(x) x['income'])

Use these values in a SpatRaster

rinc <- setValues(r, inc)
plot(rinc)
plot(countiesTA, add=T)

96 Chapter 6. Local regression



Spatial Data Analysis with R

autocor(rinc)
## lyr.1
## 1.326968

So that was a lot of ‘home-brew-GWR’.

Question 1: Can you comment on weaknesses (and perhaps strengths) of the approaches I have shown?

6.5. Geographicaly Weighted Regression 97



Spatial Data Analysis with R

6.6 spgwr package

Now use the spgwr package (and the the gwr function) to fit the model. You can do this with all data, as long as you
supply and argument fit.points (to avoid estimating a model for each observation point. You can use a raster similar
to the one I used above (perhaps disaggregate with a factor 2 first).

This is how you can get the points to use:

Create a SpatRaster with the correct extent

r <- rast(countiesTA)

Set to a desired resolution. I choose 25 km

res(r) <- 25000

I only want cells inside of CA, so I add some more steps.

ca <- rasterize(countiesTA, r)

Extract the coordinates that are not NA.

fitpoints <- crds(ca)

Now specify the model

gwr.model <- ______

gwr returns a list-like object that includes (as first element) a SpatialPointsDataFrame that has the model coeffi-
cients. Plot these and, after that, transfer them to a SpatRaster.

To extract the SpatialPointsDataFrame:

sp <- gwr.model$SDF
v <- vect(sp)
v

To reconnect these values to the raster structure (etc.)

cells <- cellFromXY(r, fitpoints)
dd <- as.matrix(data.frame(sp))
b <- rast(r, nl=ncol(dd))
b[cells] <- dd
names(b) <- colnames(dd)
plot(b)

Question 2: spgwr shows a remarkable startup message. What is that about?

Question 3: Briefly comment on the results and the differences (if any) with the two home-brew examples.

98 Chapter 6. Local regression



CHAPTER

SEVEN

SPATIAL REGRESSION MODELS

7.1 Introduction

This chapter deals with the problem of inference in (regression) models with spatial data. Inference from regression
models with spatial data can be suspect. In essence this is because nearby things are similar, and it may not be fair to
consider individual cases as independent (they may be pseudo-replicates). Therefore, such models need to be diagnosed
before reporting them. Specifically, it is important to evaluate the for spatial autocorrelation in the residuals (as these
are supposed to be independent, not correlated).

If the residuals are spatially autocorrelated, this indicates that the model is misspecified. In that case you should try to
improve the model by adding (and perhaps removing) important variables. If that is not possible (either because there
is no data available, or because you have no clue as to what variable to look for), you can try formulating a regression
model that controls for spatial autocorrelation. We show some examples of that approach here.

7.2 Reading & aggregating data

We use California house price data from the 2000 Census.

7.2.1 Get the data

if (!require("rspat")) remotes::install_github("rspatial/rspat")
## Loading required package: rspat
## Loading required package: terra
## terra 1.7.62

library(rspat)
h <- spat_data('houses2000')

I have selected some variables on on housing and population. You can get more data from the American Fact Finder
http://factfinder2.census.gov (among other web sites).

dim(h)
## [1] 7049 29
names(h)
## [1] "TRACT" "GEOID" "label" "houseValue" "nhousingUn"
## [6] "recHouses" "nMobileHom" "yearBuilt" "nBadPlumbi" "nBadKitche"
## [11] "nRooms" "nBedrooms" "medHHinc" "Population" "Males"
## [16] "Females" "Under5" "MedianAge" "White" "Black"

(continues on next page)

99

http://factfinder2.census.gov


Spatial Data Analysis with R

(continued from previous page)

## [21] "AmericanIn" "Asian" "Hispanic" "PopInHouse" "nHousehold"
## [26] "Families" "householdS" "familySize" "County"

These are the variables we have:

variabl e description
nhousin gUn number of housing units
recHous es number of houses for recreational use
nMobile Hom number of mobile homes
nBadPlu mbi number of houses with incomplete plumbing
nBadKit che number of houses with incomplete kitchens
Populat ion total population
Males number of males
Females number of females
Under5 number of persons under five
White number of persons identifying themselves as white (only)
Black number of persons identifying themselves African-american (only)
America nIn number of persons identifying themselves American Indian (only)
Asian number of persons identifying themselves as American Indian (only)
Hispani c number of persons identifying themselves as hispanic (only)
PopInHo use number of persons living in households
nHouseh old number of households
Familie s number of families
houseVa lue value of the house
yearBui lt year house was built
nRooms median number of rooms per house
nBedroo ms median number of bedrooms per house
medHHin c median household income
MedianA ge median age of population
househo ldS median household size
familyS ize median family size

First some data massaging. These are values for Census tracts. I want to analyze these data at the county level. So we
need to aggregate the values.

# using a tiny buffer to get a cleaner aggregation
hb <- buffer(h, 1)
values(hb) <- values(h)
hha <- aggregate(hb, "County")

Now we have the county outlines, but we also need to get the values of interest at the county level. Although it is
possible to do everything in one step in the aggregate function, I prefer to do this step by step. The simplest case is
where we can sum the numbers. For example for the number of houses.

d1 <- as.data.frame(h)[, c("nhousingUn", "recHouses", "nMobileHom", "nBadPlumbi",
"nBadKitche", "Population", "Males", "Females", "Under5", "White",
"Black", "AmericanIn", "Asian", "Hispanic", "PopInHouse", "nHousehold", "Families")]

d1a <- aggregate(d1, list(County=h$County), sum, na.rm=TRUE)

In other cases we need to use a weighted mean. For example for houseValue. We should weight it by the number of
houses (households) in each tract.

100 Chapter 7. Spatial regression models



Spatial Data Analysis with R

d2 <- as.data.frame(h)[, c("houseValue", "yearBuilt", "nRooms", "nBedrooms",
"medHHinc", "MedianAge", "householdS", "familySize")]

d2 <- cbind(d2 * h$nHousehold, hh=h$nHousehold)

d2a <- aggregate(d2, list(County=h$County), sum, na.rm=TRUE)
d2a[, 2:ncol(d2a)] <- d2a[, 2:ncol(d2a)] / d2a$hh

Combine these two groups:

d12 <- merge(d1a, d2a, by='County')

And merge the aggregated (from census tract to county level) attribute data with the aggregated polygons

hh <- merge(hha[, "County"], d12, by='County')

Let’s make some maps, at the orignal Census tract level. First the house value, using a legend with 10 intervals.

library(RColorBrewer)
grps <- 10
brks <- quantile(h$houseValue, 0:(grps-1)/(grps-1), na.rm=TRUE)
plot(h, "houseValue", breaks=brks, col=rev(brewer.pal(grps, "RdBu")), border=NA)
lines(hh, col="white")

7.2. Reading & aggregating data 101



Spatial Data Analysis with R

A map of the median household income.

brks <- quantile(h$medHHinc, 0:(grps-1)/(grps-1), na.rm=TRUE)
plot(h, "medHHinc", breaks=brks, col=rev(brewer.pal(grps, "RdBu")), border=NA)
lines(hh, col="white")

102 Chapter 7. Spatial regression models



Spatial Data Analysis with R

7.3 Basic OLS model

I now make some models with the county-level data. I first compute some new variables (that I might not all use).

hh$fBadP <- pmax(hh$nBadPlumbi, hh$nBadKitche) / hh$nhousingUn
hh$fWhite <- hh$White / hh$Population
hh$age <- 2000 - hh$yearBuilt

f1 <- houseValue ~ age + nBedrooms
m1 <- lm(f1, data=as.data.frame(hh))
summary(m1)
##
## Call:
## lm(formula = f1, data = as.data.frame(hh))

(continues on next page)

7.3. Basic OLS model 103



Spatial Data Analysis with R

(continued from previous page)

##
## Residuals:
## Min 1Q Median 3Q Max
## -222541 -67489 -6128 60509 217655
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -628578 233217 -2.695 0.00931 **
## age 12695 2480 5.119 4.05e-06 ***
## nBedrooms 191889 76756 2.500 0.01543 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 94740 on 55 degrees of freedom
## Multiple R-squared: 0.3235, Adjusted R-squared: 0.2989
## F-statistic: 13.15 on 2 and 55 DF, p-value: 2.147e-05

Just for illustration, here is how you can do OLS with matrix algebra. First set up the data. I add a constant variable
‘1’ to X, to get an intercept.

y <- matrix(hh$houseValue)
X <- cbind(1, hh$age, hh$nBedrooms)

Then use matrix algebra

ols <- solve(t(X) %*% X) %*% t(X) %*% y
rownames(ols) <- c('intercept', 'age', 'nBedroom')
ols
## [,1]
## intercept -628577.95
## age 12694.75
## nBedroom 191888.89

So, according to this simple model, “age” is highly significant. The older a house, the more expensive. You pay
1,269,475 dollars more for a house that is 100 years old than a for new house! While the p-value for the number of
bedrooms is not impressive, but every bedroom adds about 200,000 dollars to the value of a house.

Question 1: What would be the price be of a house built in 1999 with three bedrooms?

(the answer may surprise you),

Let’s see if the errors (model residuals) appear to be randomly distributed in space.

hh$residuals <- residuals(m1)
brks <- quantile(hh$residuals, 0:(grps-1)/(grps-1), na.rm=TRUE)
plot(hh, "residuals", breaks=brks, col=rev(brewer.pal(grps, "RdBu")))

104 Chapter 7. Spatial regression models



Spatial Data Analysis with R

What do think? Is this a random pattern? Let’s see what Mr. Moran would say. First make a neighborhoods list. I add
two links: between San Francisco and Marin County and vice versa (to consider the Golden Gate bridge).

library(spdep)

sfhh <- sf::st_as_sf(hh)
nb <- poly2nb(sfhh, snap=1/120)
nb[[21]] <- sort(as.integer(c(nb[[21]], 38)))
nb[[38]] <- sort(as.integer(c(21, nb[[38]])))
nb
## Neighbour list object:
## Number of regions: 58
## Number of nonzero links: 278
## Percentage nonzero weights: 8.263971
## Average number of links: 4.793103

par(mai=c(0,0,0,0))
(continues on next page)

7.3. Basic OLS model 105



Spatial Data Analysis with R

(continued from previous page)

plot(hh)
plot(nb, crds(centroids(hh)), col='red', lwd=2, add=TRUE)

We can use the neighbour list object to get the average value for the neighbors of each polygon.

resnb <- sapply(nb, function(x) mean(hh$residuals[x]))
cor(hh$residuals, resnb)
## [1] 0.6311218
plot(hh$residuals, resnb, xlab="Residuals", ylab="Mean adjacent residuals", pch=20)
abline(lm(resnb ~ hh$residuals), lwd=2, lty=2)

106 Chapter 7. Spatial regression models



Spatial Data Analysis with R

The residualso appear to be autocorrelated. A formal test:

lw <- nb2listw(nb)
moran.mc(hh$residuals, lw, 999)
##
## Monte-Carlo simulation of Moran I
##
## data: hh$residuals
## weights: lw
## number of simulations + 1: 1000
##
## statistic = 0.41428, observed rank = 1000, p-value = 0.001
## alternative hypothesis: greater

Clearly, there is spatial autocorrelation. Our model cannot be trusted. so let’s try SAR models.

7.3. Basic OLS model 107



Spatial Data Analysis with R

7.4 Spatial lag model

Here I show a how to do spatial regression with a spatial lag model (lagsarlm), using the spatialreg package.

library(spatialreg )

m1s <- lagsarlm(f1, data=as.data.frame(hh), lw, tol.solve=1.0e-30)

summary(m1s)
##
## Call:lagsarlm(formula = f1, data = as.data.frame(hh), listw = lw,
## tol.solve = 1e-30)
##
## Residuals:
## Min 1Q Median 3Q Max
## -108145.2 -49816.3 -1316.3 44604.9 171536.0
##
## Type: lag
## Coefficients: (asymptotic standard errors)
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -418674.1 153693.6 -2.7241 0.006448
## age 5533.6 1698.2 3.2584 0.001120
## nBedrooms 127912.8 50859.7 2.5150 0.011903
##
## Rho: 0.77413, LR test value: 34.761, p-value: 3.7282e-09
## Asymptotic standard error: 0.08125
## z-value: 9.5277, p-value: < 2.22e-16
## Wald statistic: 90.778, p-value: < 2.22e-16
##
## Log likelihood: -727.9964 for lag model
## ML residual variance (sigma squared): 3871700000, (sigma: 62223)
## Number of observations: 58
## Number of parameters estimated: 5
## AIC: NA (not available for weighted model), (AIC for lm: 1498.8)
## LM test for residual autocorrelation
## test value: 0.12431, p-value: 0.72441

hh$residuals <- residuals(m1s)
moran.mc(hh$residuals, lw, 999)
##
## Monte-Carlo simulation of Moran I
##
## data: hh$residuals
## weights: lw
## number of simulations + 1: 1000
##
## statistic = -0.016, observed rank = 511, p-value = 0.489
## alternative hypothesis: greater

brks <- quantile(hh$residuals, 0:(grps-1)/(grps-1), na.rm=TRUE)
plot(hh, "residuals", breaks=brks, col=rev(brewer.pal(grps, "RdBu")))

108 Chapter 7. Spatial regression models



Spatial Data Analysis with R

7.5 Spatial error model

And now with a “Spatial error” (or spatial moving average) models (errorsarlm). Note the use of the lw argument.

m1e <- errorsarlm(f1, data=as.data.frame(hh), lw, tol.solve=1.0e-30)
summary(m1e)
##
## Call:errorsarlm(formula = f1, data = as.data.frame(hh), listw = lw,
## tol.solve = 1e-30)
##
## Residuals:
## Min 1Q Median 3Q Max
## -100640.7 -47783.1 -2364.5 44180.6 181876.5
##

(continues on next page)

7.5. Spatial error model 109



Spatial Data Analysis with R

(continued from previous page)

## Type: error
## Coefficients: (asymptotic standard errors)
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -185443.8 180133.7 -1.0295 0.30325
## age 4313.6 2214.9 1.9475 0.05147
## nBedrooms 117864.5 51564.7 2.2858 0.02227
##
## Lambda: 0.82151, LR test value: 29.781, p-value: 4.8373e-08
## Asymptotic standard error: 0.071111
## z-value: 11.552, p-value: < 2.22e-16
## Wald statistic: 133.46, p-value: < 2.22e-16
##
## Log likelihood: -730.4863 for error model
## ML residual variance (sigma squared): 4.07e+09, (sigma: 63797)
## Number of observations: 58
## Number of parameters estimated: 5
## AIC: 1471, (AIC for lm: 1498.8)

hh$residuals <- residuals(m1e)
moran.mc(hh$residuals, lw, 999)
##
## Monte-Carlo simulation of Moran I
##
## data: hh$residuals
## weights: lw
## number of simulations + 1: 1000
##
## statistic = 0.039033, observed rank = 768, p-value = 0.232
## alternative hypothesis: greater

brks <- quantile(hh$residuals, 0:(grps-1)/(grps-1), na.rm=TRUE)
plot(hh, "residuals", breaks=brks, col=rev(brewer.pal(grps, "RdBu")))

110 Chapter 7. Spatial regression models



Spatial Data Analysis with R

Are the residuals spatially autocorrelated for either of these models? Let’s plot them for the spatial error model.

brks <- quantile(hh$residuals, 0:(grps-1)/(grps-1), na.rm=TRUE)
plot(hh, "residuals", breaks=brks, col=rev(brewer.pal(grps, "RdBu")))

7.5. Spatial error model 111



Spatial Data Analysis with R

7.6 Questions

Question 2: The last two maps still seem to show a lot of spatial autocorrelation. But according to the tests there is
none. Now why might that be?

Question 3: One of the most important, or perhaps THE most important aspect of modeling is variable selection. A
misspecified model is never going to be any good, no matter how much you do to, e.g., correct for spatial autocorrela-
tion.

a) Which variables would you choose from the list?

b) Which new variables could you propose to create from the variables in the list.

c) Which other variables could you add, created from the geometries/location (perhaps other geographic data).

d) add a lot of variables and use stepAIC to select an ‘optimal’ OLS model

e) check for spatial autocorrelation in the residuals of that model

112 Chapter 7. Spatial regression models



CHAPTER

EIGHT

POINT PATTERN ANALYSIS

8.1 Introduction

We are using a dataset of crimes in a city. Start by reading in the data.

if (!require("rspat")) remotes::install_github("rspatial/rspat")
## Loading required package: rspat
## Loading required package: terra
## terra 1.7.62
library(rspat)
city <- spat_data("city")
crime <- spat_data("crime")

Here is a map of both datasets.

plot(city, col="light blue")
points(crime, col="red", cex=.5, pch="+")

A sorted table of the incidence of crime types.

113



Spatial Data Analysis with R

tb <- sort(table(crime$CATEGORY))[-1]
tb
##
## Arson Weapons Robbery
## 9 15 49
## Auto Theft Drugs or Narcotics Commercial Burglary
## 86 134 143
## Grand Theft Assaults DUI
## 143 172 212
## Residential Burglary Vehicle Burglary Drunk in Public
## 219 221 232
## Vandalism Petty Theft
## 355 665

Let’s get the coordinates of the crime data, and for this exercise, remove duplicate crime locations. These are the
“events” we will use below (later we’ll go back to the full data set).

xy <- crds(crime)
dim(xy)
## [1] 2661 2
xy <- unique(xy)
dim(xy)
## [1] 1208 2
head(xy)
## x y
## [1,] 6628868 1963718
## [2,] 6632796 1964362
## [3,] 6636855 1964873
## [4,] 6626493 1964343
## [5,] 6639506 1966094
## [6,] 6640478 1961983

8.2 Basic statistics

Compute the mean center and standard distance for the crime data.

# mean center
mc <- apply(xy, 2, mean)
# standard distance
sd <- sqrt(sum((xy[,1] - mc[1])^2 + (xy[,2] - mc[2])^2) / nrow(xy))

Plot the data to see what we’ve got. I add a summary circle (as in Fig 5.2) by dividing the circle in 360 points and
compute bearing in radians. I do not think this is particularly helpful, but it might be in other cases. And it is always
fun to figure out how to do tis.

plot(city, col="light blue")
points(crime, cex=.5)
points(cbind(mc[1], mc[2]), pch="*", col="red", cex=5)

# make a circle
bearing <- 1:360 * pi/180

(continues on next page)

114 Chapter 8. Point pattern analysis



Spatial Data Analysis with R

(continued from previous page)

cx <- mc[1] + sd * cos(bearing)
cy <- mc[2] + sd * sin(bearing)
circle <- cbind(cx, cy)
lines(circle, col='red', lwd=2)

8.3 Density

Here is a basic approach to computing point density.

CityArea <- expanse(city)
dens <- nrow(xy) / CityArea

Question 1a:What is the unit of ‘dens’?

Question 1b:What is the number of crimes per square km?

To compute quadrat counts I first create quadrats (a SpatRaster). I get the extent for the raster from the city polygon,
and then assign an an arbitrary resolution of 1000. (In real life one should always try a range of resolutions, I think).

r <- rast(city, res=1000)

To find the cells that are in the city, and for easy display, I create polygons from the SpatRaster.

r <- rasterize(city, r)
plot(r)
quads <- as.polygons(r)
plot(quads, add=TRUE)
points(crime, col='red', cex=.5)

8.3. Density 115



Spatial Data Analysis with R

The number of events in each quadrat can be counted using the ‘rasterize’ function. That function can be used to
summarize the number of points within each cell, but also to compute statistics based on the ‘marks’ (attributes). For
example we could compute the number of different crime types) by changing the ‘fun’ argument to another function
(see ?rasterize).

nc <- rasterize(crime, r, fun=function(i){length(i)}, background=0)
plot(nc)
plot(city, add=TRUE)

nc has crime counts. As we only have data for the city, the areas outside of the city need to be excluded. We can do
that with the mask function (see ?mask).

ncrimes <- mask(nc, r)
(continues on next page)

116 Chapter 8. Point pattern analysis



Spatial Data Analysis with R

(continued from previous page)

plot(ncrimes)
plot(city, add=TRUE)

Better. Now the frequencies.

f <- freq(ncrimes)
head(f)
## layer value count
## 1 1 0 53
## 2 1 1 28
## 3 1 2 21
## 4 1 3 29
## 5 1 4 18
## 6 1 5 14
plot(f, pch=20)

8.3. Density 117



Spatial Data Analysis with R

Does this look like a pattern you would have expected? Now compute the average number of cases per quadrat.

# number of quadrats
quadrats <- sum(f[,2])
# number of cases
cases <- sum(f[,1] * f[,2])
mu <- cases / quadrats
mu
## [1] 1

And create a table like Table 5.1 on page 130

ff <- data.frame(f)
colnames(ff) <- c('K', 'X')
ff$Kmu <- ff$K - mu
ff$Kmu2 <- ff$Kmu^2
ff$XKmu2 <- ff$Kmu2 * ff$X

(continues on next page)

118 Chapter 8. Point pattern analysis



Spatial Data Analysis with R

(continued from previous page)

head(ff)
## K X NA Kmu Kmu2 XKmu2
## 1 1 0 53 0 0 0
## 2 1 1 28 0 0 0
## 3 1 2 21 0 0 0
## 4 1 3 29 0 0 0
## 5 1 4 18 0 0 0
## 6 1 5 14 0 0 0

The observed variance s2 is

s2 <- sum(ff$XKmu2) / (sum(ff$X)-1)
s2
## [1] 0

And the VMR is

VMR <- s2 / mu
VMR
## [1] 0

Question 2:What does this VMR score tell us about the point pattern?

8.4 Distance based measures

As we are using a planar coordinate system we can use the dist function to compute the distances between pairs of
points. If we were using longitude/latitude we could compute distance via spherical trigonometry functions. These are
available in the sp, raster, and notably the geosphere package (among others). For example, see terra::distance.

d <- dist(xy)
class(d)
## [1] "dist"

I want to coerce the dist object to a matrix, and ignore distances from each point to itself (the zeros on the diagonal).

dm <- as.matrix(d)
dm[1:5, 1:5]
## 1 2 3 4 5
## 1 0.000 3980.843 8070.429 2455.809 10900.016
## 2 3980.843 0.000 4090.992 6303.450 6929.439
## 3 8070.429 4090.992 0.000 10375.958 2918.349
## 4 2455.809 6303.450 10375.958 0.000 13130.236
## 5 10900.016 6929.439 2918.349 13130.236 0.000
diag(dm) <- NA
dm[1:5, 1:5]
## 1 2 3 4 5
## 1 NA 3980.843 8070.429 2455.809 10900.016
## 2 3980.843 NA 4090.992 6303.450 6929.439
## 3 8070.429 4090.992 NA 10375.958 2918.349
## 4 2455.809 6303.450 10375.958 NA 13130.236
## 5 10900.016 6929.439 2918.349 13130.236 NA

8.4. Distance based measures 119



Spatial Data Analysis with R

To get, for each point, the minimum distance to another event, we can use the ‘apply’ function. Think of the rows as
each point, and the columns of all other points (vice versa could also work).

dmin <- apply(dm, 1, min, na.rm=TRUE)
head(dmin)
## 1 2 3 4 5 6
## 266.07892 293.58874 47.90260 140.80688 40.06865 510.41231

Now it is trivial to get the mean nearest neighbour distance according to formula 5.5, page 131.

mdmin <- mean(dmin)

Do you want to know, for each point, Which point is its nearest neighbour? Use the ‘which.min’ function (but note that
this ignores the possibility of multiple points at the same minimum distance).

wdmin <- apply(dm, 1, which.min)

And what are the most isolated cases? That is the furtest away from their nearest neigbor. I plot the top 25. A bit
complicated.

plot(city)
points(crime, cex=.1)
ord <- rev(order(dmin))

far25 <- ord[1:25]
neighbors <- wdmin[far25]

points(xy[far25, ], col='blue', pch=20)
points(xy[neighbors, ], col='red')

# drawing the lines, easiest via a loop
for (i in far25) {

lines(rbind(xy[i, ], xy[wdmin[i], ]), col='red')
}

120 Chapter 8. Point pattern analysis



Spatial Data Analysis with R

Note that some points, but actually not that many, are used as isolated and as a neighbor to an isolated points.

Now on to the G function

max(dmin)
## [1] 1829.738
# get the unique distances (for the x-axis)
distance <- sort(unique(round(dmin)))
# compute how many cases there with distances smaller that each x
Gd <- sapply(distance, function(x) sum(dmin < x))
# normalize to get values between 0 and 1
Gd <- Gd / length(dmin)
plot(distance, Gd)

8.4. Distance based measures 121



Spatial Data Analysis with R

# using xlim to exclude the extremes
plot(distance, Gd, xlim=c(0,500))

122 Chapter 8. Point pattern analysis



Spatial Data Analysis with R

Here is a function to show these values in a more standard way.

stepplot <- function(x, y, type='l', add=FALSE, ...) {
x <- as.vector(t(cbind(x, c(x[-1], x[length(x)]))))
y <- as.vector(t(cbind(y, y)))

if (add) {
lines(x,y, ...)

} else {
plot(x,y, type=type, ...)

}
}

And use it for our G function data.

8.4. Distance based measures 123



Spatial Data Analysis with R

stepplot(distance, Gd, type='l', lwd=2, xlim=c(0,500))

The steps are so small in our data, that you hardly see the difference.

I use the centers of previously defined raster cells to compute the F function.

c# get the centers of the 'quadrats' (raster cells)
## function (...) .Primitive("c")
p <- as.points(r)
# compute distance from all crime sites to these cell centers
d2 <- distance(p, crime)
d2 <- as.matrix(d2)
# the remainder is similar to the G function
Fdistance <- sort(unique(round(d2)))
mind <- apply(d2, 1, min)
Fd <- sapply(Fdistance, function(x) sum(mind < x))
Fd <- Fd / length(mind)

(continues on next page)

124 Chapter 8. Point pattern analysis



Spatial Data Analysis with R

(continued from previous page)

plot(Fdistance, Fd, type='l', lwd=2, xlim=c(0,3000))

Compute the expected distributon (5.12 on page 145)

ef <- function(d, lambda) {
E <- 1 - exp(-1 * lambda * pi * d^2)

}
expected <- ef(0:2000, dens)

Now, let’s combine F and G on one plot.

plot(distance, Gd, type='l', lwd=2, col='red', las=1,
ylab='F(d) or G(d)', xlab='Distance', yaxs="i", xaxs="i", ylim=c(0,1.1))

lines(Fdistance, Fd, lwd=2, col='blue')
lines(0:2000, expected, lwd=2)

(continues on next page)

8.4. Distance based measures 125



Spatial Data Analysis with R

(continued from previous page)

legend(1200, .3,
c(expression(italic("G")["d"]), expression(italic("F")["d"]), 'expected'),
lty=1, col=c('red', 'blue', 'black'), lwd=2, bty="n")

Question 3: What does this plot suggest about the point pattern?

Finally, let’s compute K. Note that I use the original distance matrix ‘d’ here.

distance <- seq(1, 30000, 100)
Kd <- sapply(distance, function(x) sum(d < x)) # takes a while
Kd <- Kd / (length(Kd) * dens)
plot(distance, Kd, type='l', lwd=2)

126 Chapter 8. Point pattern analysis



Spatial Data Analysis with R

Question 4: Create a single random pattern of events for the city, with the same number of events as the crime data
(object xy). Use function ‘spsample’

Question 5: Compute the G function, and plot it on a single plot, together with the G function for the observed crime
data, and the theoretical expectation (formula 5.12).

Question 6: (Difficult!) Do a Monte Carlo simulation (page 149) to see if the ‘mean nearest distance’ of the observed
crime data is significantly different from a random pattern. Use a ‘for loop’. First write ‘pseudo-code’. That is, say in
natural language what should happen. Then try to write R code that implements this.

8.4. Distance based measures 127



Spatial Data Analysis with R

8.5 Spatstat package

Above we did some ‘home-brew’ point pattern analysis, we will now use the spatstat package. In research you would
normally use spatstat rather than your own functions, at least for standard analysis. I showed how you make some of
these functions in the previous sections, because understanding how to go about that may allow you to take things in
directions that others have not gone. The good thing about spatstat is that it very well documented (see http://spatstat.
github.io/). The bad thing is that it uses an entirly different sets of classes (ways to represent spatial data) that we we
will use in all other labs (classes from sp and raster); but it is not hard to get used to that.

library(spatstat)

We start with making make a Kernel Density raster. I first create a ‘ppp’ (point pattern) object, as defined in the spatstat
package.

A ppp object has the coordinates of the points and the analysis ‘window’ (study region). To assign the points locations
we need to extract the coordinates from our SpatialPoints object. To set the window, we first need to to coerce our
SpatialPolygons into an ‘owin’ object. We need a function from the maptools package for this coercion.

Coerce from SpatVector to an object of class “owin” (observation window) via sf

cityOwin <- as.owin(sf::st_as_sf(city))
class(cityOwin)
## [1] "owin"
cityOwin
## window: polygonal boundary
## enclosing rectangle: [6620591, 6654380] x [1956729.8, 1971518.9] units

Extract coordinates from SpatialPointsDataFrame:

pts <- terra::crds(crime)
head(pts)
## x y
## [1,] 6628868 1963718
## [2,] 6632796 1964362
## [3,] 6636855 1964873
## [4,] 6626493 1964343
## [5,] 6639506 1966094
## [6,] 6640478 1961983

Now we can create a ‘ppp’ (point pattern) object

p <- ppp(pts[,1], pts[,2], window=cityOwin)
## Warning: 20 points were rejected as lying outside the specified window
## Warning: data contain duplicated points
class(p)
## [1] "ppp"
p
## Planar point pattern: 2641 points
## window: polygonal boundary
## enclosing rectangle: [6620591, 6654380] x [1956729.8, 1971518.9] units
## *** 20 illegal points stored in attr(,"rejects") ***
plot(p)
## Warning in plot.ppp(p): 20 illegal points also plotted

128 Chapter 8. Point pattern analysis

http://spatstat.github.io/
http://spatstat.github.io/


Spatial Data Analysis with R

Note the warning message about ‘illegal’ points. Do you see them and do you understand why they are illegal?

Having all the data well organized, it is now easy to compute Kernel Density

ds <- density(p)
class(ds)
## [1] "im"
plot(ds, main='crime density')

8.5. Spatstat package 129



Spatial Data Analysis with R

Density is the number of points per unit area. Let’s ceck if the numbers makes sense, by adding them up and mulitplying
with the area of the raster cells. I use terra package functions for that.

nrow(pts)
## [1] 2661
r <- rast(ds)
s <- sum(values(r), na.rm=TRUE)
s * prod(res(r))
## [1] 2640.556

Looks about right. We can also get the information directly from the “im” (image) object

str(ds)
## List of 10
## $ v : num [1:128, 1:128] NA NA NA NA NA NA NA NA NA NA ...
## $ dim : int [1:2] 128 128
## $ xrange: num [1:2] 6620591 6654380

(continues on next page)

130 Chapter 8. Point pattern analysis



Spatial Data Analysis with R

(continued from previous page)

## $ yrange: num [1:2] 1956730 1971519
## $ xstep : num 264
## $ ystep : num 116
## $ xcol : num [1:128] 6620723 6620987 6621251 6621515 6621779 ...
## $ yrow : num [1:128] 1956788 1956903 1957019 1957134 1957250 ...
## $ type : chr "real"
## $ units :List of 3
## ..$ singular : chr "unit"
## ..$ plural : chr "units"
## ..$ multiplier: num 1
## ..- attr(*, "class")= chr "unitname"
## - attr(*, "class")= chr "im"
## - attr(*, "sigma")= num 1849
## - attr(*, "kernel")= chr "gaussian"
## - attr(*, "kerdata")=List of 5
## ..$ sigma : num 1849
## ..$ varcov : NULL
## ..$ cutoff : num 14789
## ..$ warnings: NULL
## ..$ kernel : chr "gaussian"
sum(ds$v, na.rm=TRUE) * ds$xstep * ds$ystep
## [1] 2640.556
p$n
## [1] 2641

Here’s another, lenghty, example of generalization. We can interpolate population density from (2000) census data;
assigning the values to the centroid of a polygon (as explained in the book, but not a great technique). We use a shapefile
with census data.

census <- spat_data("census2000.rds")

To compute population density for each census block, we first need to get the area of each polygon. I transform density
from persons per feet2 to persons per mile2, and then compute population density from POP2000 and the area

census$area <- expanse(census)
census$area <- census$area/27878400
census$dens <- census$POP2000 / census$area

Now to get the centroids of the census blocks.

p <- terra::crds(centroids(census))
head(p)
## x y
## [1,] 6666671 1991720
## [2,] 6655379 1986903
## [3,] 6604777 1982474
## [4,] 6612242 1981881
## [5,] 6613488 1986776
## [6,] 6616743 1986446

To create the ‘window’ we dissolve all polygons into a single polygon.

8.5. Spatstat package 131



Spatial Data Analysis with R

win <- aggregate(census)

Let’s look at what we have:

plot(census)
points(p, col='red', pch=20, cex=.25)
plot(win, add=TRUE, border='blue', lwd=3)

Now we can use ‘Smooth.ppp’ to interpolate. Population density at the points is referred to as the ‘marks’

owin <- as.owin(sf::st_as_sf(win))
pp <- ppp(p[,1], p[,2], window=owin, marks=census$dens)
## Warning: 1 point was rejected as lying outside the specified window
pp
## Marked planar point pattern: 645 points
## marks are numeric, of storage type 'double'

(continues on next page)

132 Chapter 8. Point pattern analysis



Spatial Data Analysis with R

(continued from previous page)

## window: polygonal boundary
## enclosing rectangle: [6576938, 6680926] x [1926586.1, 2007558.2] units
## *** 1 illegal point stored in attr(,"rejects") ***

Note the warning message: “1 point was rejected as lying outside the specified window”. That is odd, there is a polygon
that has a centroid that is outside of the polygon. This can happen with, e.g., kidney shaped polygons.

Let’s find and remove this point that is outside the study area.

sp <- vect(p, crs=crs(win))
i <- relate(sp, win, "intersects")
i <- which(!i)
i
## [1] 588

Let’s see where it is:

plot(census)
points(sp)
points(sp[i,], col='red', cex=3, pch=20)

8.5. Spatstat package 133



Spatial Data Analysis with R

You can zoom in using the code below. After running the next line, click on your map twice to zoom to the red dot,
otherwise you cannot continue:

zoom(census)

And add the red points again

points(sp[i,], col='red')

To only use points that intersect with the window polygon, that is, where ‘i == TRUE’:

pp <- ppp(p[i,1], p[i,2], window=owin, marks=census$dens[i])
## Warning: 1 point was rejected as lying outside the specified window
plot(pp)
## Warning in plot.ppp(pp): 1 illegal points also plotted
plot(city, add=TRUE)

134 Chapter 8. Point pattern analysis



Spatial Data Analysis with R

And to get a smooth interpolation of population density.

s <- Smooth.ppp(pp)
plot(s)
## Warning: All pixel values are NA
## Warning: Cannot determine range of values for colour map
plot(city, add=TRUE)

8.5. Spatstat package 135



Spatial Data Analysis with R

Population density could establish the “population at risk” (to commit a crime) for certain crimes, but not for others.

Maps with the city limits and the incidence of ‘auto-theft’, ‘drunk in public’, ‘DUI’, and ‘Arson’.

par(mfrow=c(2,2), mai=c(0.25, 0.25, 0.25, 0.25))
for (offense in c("Auto Theft", "Drunk in Public", "DUI", "Arson")) {
plot(city, col='grey')
acrime <- crime[crime$CATEGORY == offense, ]
points(acrime, col = "red")
title(offense)

}

136 Chapter 8. Point pattern analysis



Spatial Data Analysis with R

Create a marked point pattern object (ppp) for all crimes. It is important to coerce the marks to a factor variable.

crime$fcat <- as.factor(crime$CATEGORY)
w <- as.owin(sf::st_as_sf(city))
xy <- terra::crds(crime)
mpp <- ppp(xy[,1], xy[,2], window = w, marks=as.factor(crime$fcat))
## Warning: 20 points were rejected as lying outside the specified window
## Warning: data contain duplicated points

We can split the mpp object by category (crime)

spp <- split(mpp)

plot(spp[1:4], main=)

8.5. Spatstat package 137



Spatial Data Analysis with R

The crime density by category:

plot(density(spp[1:4]), main='')

138 Chapter 8. Point pattern analysis



Spatial Data Analysis with R

And produce K-plots (with an envelope) for ‘drunk in public’ and ‘Arson’. Can you explain what they mean?

spatstat.options(checksegments = FALSE)
ktheft <- Kest(spp$"Auto Theft")
ketheft <- envelope(spp$"Auto Theft", Kest)
## Generating 99 simulations of CSR ...
## 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
## 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
## 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60,
## 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80,
## 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98,
## 99.
##
## Done.
ktheft <- Kest(spp$"Arson")
ketheft <- envelope(spp$"Arson", Kest)
## Generating 99 simulations of CSR ...
## 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
## 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
## 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60,
## 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80,
## 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98,
## 99.
##
## Done.

8.5. Spatstat package 139



Spatial Data Analysis with R

par(mfrow=c(1,2))
plot(ktheft)
plot(ketheft)

Let’s try to answer the question you have been wanting to answer all along. Is population density a good predictor
of being (booked for) “drunk in public” and for “Arson”? One approach is to do a Kolmogorov-Smirnov (‘kstest’) on
‘Drunk in Public’ and ‘Arson’, using population density as a covariate:

KS.arson <- cdf.test(spp$Arson, ds)
KS.arson
##
## Spatial Kolmogorov-Smirnov test of CSR in two dimensions
##
## data: covariate 'ds' evaluated at points of 'spp$Arson'
## and transformed to uniform distribution under CSR
## D = 0.50693, p-value = 0.01145
## alternative hypothesis: two-sided
KS.drunk <- cdf.test(spp$'Drunk in Public', ds)
KS.drunk
##
## Spatial Kolmogorov-Smirnov test of CSR in two dimensions
##
## data: covariate 'ds' evaluated at points of 'spp$"Drunk in Public"'
## and transformed to uniform distribution under CSR
## D = 0.54008, p-value < 2.2e-16
## alternative hypothesis: two-sided

Question 7: Why is the result surprising, or not surprising?

We can also compare the patterns for “drunk in public” and for “Arson” with the KCross function.

140 Chapter 8. Point pattern analysis



Spatial Data Analysis with R

kc <- Kcross(mpp, i = "Drunk in Public", j = "Arson")
ekc <- envelope(mpp, Kcross, nsim = 50, i = "Drunk in Public", j = "Arson")
## Generating 50 simulations of CSR ...
## 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
## 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
## 41, 42, 43, 44, 45, 46, 47, 48, 49,
## 50.
##
## Done.
plot(ekc)

Much more about point pattern analysis with spatstat is available here

8.5. Spatstat package 141

https://research.csiro.au/software/r-workshop-notes/

	Introduction
	Scale and distance
	Introduction
	Scale and resolution
	Zonation
	Distance
	Distance matrix
	Distance for longitude/latitude coordinates

	Spatial influence
	Adjacency
	Two nearest neighbours
	Weights matrix
	Spatial influence for polygons

	Raster based distance metrics
	distance
	cost distance
	resistance distance


	Spatial autocorrelation
	Introduction
	Temporal autocorrelation
	Spatial autocorrelation

	Example data
	Adjacent polygons
	Compute Moran’s I

	Interpolation
	Introduction
	Temperature in California
	9.2 NULL model
	proximity polygons
	Nearest neighbour interpolation
	Inverse distance weighted

	Calfornia Air Pollution data
	Data preparation
	Fit a variogram
	Ordinary kriging
	Compare with other methods
	Cross-validation


	Spatial distribution models
	Data
	Observations
	Predictor variables
	Background data
	East vs West

	Fit a model
	CART
	Random Forest

	Predict
	Regression
	Classification

	Extrapolation
	Climate change
	Further reading

	Local regression
	California precipitation
	California House Price Data
	Summarize
	Regression
	Geographicaly Weighted Regression
	By county
	By grid cell

	spgwr package

	Spatial regression models
	Introduction
	Reading & aggregating data
	Get the data

	Basic OLS model
	Spatial lag model
	Spatial error model
	Questions

	Point pattern analysis
	Introduction
	Basic statistics
	Density
	Distance based measures
	Spatstat package


