Spatial Data Analysis with R

Robert J. Hijmans and Aniruddha Ghosh

Mar 11, 2019
CONTENTS

1 **Introduction** .. 1

2 **Scale and distance** ... 3
 2.1 Introduction ... 3
 2.2 Scale and resolution .. 3
 2.3 Zonation ... 4
 2.4 Distance ... 7
 2.4.1 Distance matrix .. 7
 2.4.2 Distance for longitude/latitude coordinates 9
 2.5 Spatial influence ... 9
 2.5.1 Adjacency .. 9
 2.5.2 Two nearest neighbours 10
 2.5.3 Weights matrix ... 11
 2.5.4 Spatial influence for polygons 11
 2.6 Raster based distance metrics 16
 2.6.1 distance ... 16
 2.6.2 cost distance .. 16
 2.6.3 resistance distance 16

3 **Spatial autocorrelation** 17
 3.1 Introduction ... 17
 3.1.1 Temporal autocorrelation 17
 3.1.2 Spatial autocorrelation 20
 3.2 Example data .. 20
 3.3 Adjacent polygons .. 22
 3.4 Compute Moran’s I ... 23

4 **Interpolation** .. 29
 4.1 Introduction ... 29
 4.2 Temperature in California 29
 4.2.1 9.2 NULL model .. 31
 4.2.2 proximity polygons 32
 4.2.3 Nearest neighbour interpolation 35
 4.2.4 Inverse distance weighted 36
 4.3 California Air Pollution data 38
 4.3.1 Data preparation ... 38
 4.3.2 Fit a variogram .. 38
 4.3.3 Ordinary kriging .. 42
 4.3.4 Compare with other methods 43
 4.3.5 Cross-validate .. 47
Spatial distribution models

5.1 Data 51
5.1.1 Observations 51
5.1.2 Predictors 52
5.1.3 Background data 55
5.1.4 Combine presence and background 56
5.2 Fit a model 56
5.2.1 CART 56
5.2.2 Random Forest 58
5.3 Predict 63
5.3.1 Regression 63
5.3.2 Classification 66
5.4 Extrapolation 68
5.5 Further reading 72

Local regression

6.1 California precipitation 73
6.2 California House Price Data 76
6.3 Summarize 78
6.4 Regression 79
6.5 Geographically Weighted Regression 80
6.5.1 By county 80
6.5.2 By grid cell 86
6.6 spgwr package 87

Spatial regression models

7.1 Introduction 89
7.2 Reading & aggregating data 89
7.2.1 Get the data 89
7.3 Basic OLS model 93
7.4 Spatial lag model 97
7.5 Spatial error model 99
7.6 Questions 102

Point pattern analysis

8.1 Introduction 103
8.2 Basic statistics 104
8.3 Density 105
8.4 Distance based measures 109
8.5 Spatstat package 116
In this section we introduce a number of approaches and techniques that are commonly used in spatial data analysis and modelling.

Spatial data are mostly like other data. The same general principles apply. But there are few things that are rather important to consider when using spatial data that are not common with other data types. These are discussed in Chapters 2 and 3 and include issues of scale and zonation (the modifiable areal unit problem), distance and spatial autocorrelation.

The other chapters introduce methods in different areas of spatial data analysis. These include the three classical area of spatial statistics (point pattern analysis, regression and inference with spatial data, geostatistics (interpolation using Kriging), as well some other methods (local and global regression and classification with spatial data).

Some of the material presented here is based on examples in the book “Geographic Information Analysis” by David O’Sullivan and David J. Unwin. This book provides an excellent and very accessible introduction to spatial data analysis. It has much more depth than what we present here. But the book does not show how to practically implement the approaches that are discussed — which is the main purpose of this website.

The spatial statistical methods are treated in much more detail in “Applied Spatial Data Analysis with R” by Bivand, Pebesma and Gómez-Rubio.

This section builds on our Introduction to Spatial Data Manipulation R, that you should read first.
2.1 Introduction

Scale, aggregations, and distance are two key concepts in spatial data analysis that can be tricky to come to grips with. This chapter first discusses scale and related concepts resolution, aggregation and zonation. The second part of the chapter discusses distance and adjacency.

2.2 Scale and resolution

The term “scale” is tricky. In its narrow geographic sense, it is the the ratio of a distance on a (paper) map to the actual distance. So if a distance of 1 cm on map “A” represents 100 m in the real world, the map scale is 1/10,000 (1:10,000 or 10⁻⁴). If 1 cm on map “B” represents 10 km in the real world, the scale of that map is 1/1,000,000. The first map “A” would have relatively large scale (and high resolution) as compared to the second map “B”, that would have a small scale (and low resolution). It follows that if the size maps “A” and “B” were the same, map “B” would represent a much larger area (would have a much larger “spatial extent”). For that reason, most people would refer to map “B” having a “larger scale”. That is technically wrong, but there is not much point in fighting that, and it is simply best to avoid the term “scale”, and certainly “small scale” and “large scale”, because that technically means the opposite of what most people think. If you want to use these terms, you should probably use them how they are commonly understood; unless you are among cartographers, of course.

Now that mapping has become a computer based activity, scale is even more treacherous. You can use the same data to make maps of different sizes. These would all have a different scale. With digital data, we are more interested in the “inherent” or “measurement” scale of the data. This is sometimes referred to as “grain” but I use “(spatial) resolution”. In the case of raster data the notion of resolution is straightforward: it is the size of the cells. For vector data resolution is not as well defined, and it can vary largely within a data set, but you can think of it as the average distance between the nodes (coordinate pairs) of the lines or polygons. Point data do not have a resolution, unless cases that are within a certain distance of each other are merged into a single point (the actual geographic objects represented by points, actually do cover some area; so the actual average size of those areas could also be a measure of interest, but it typically is not).

In the digital world it is easy to create a “false resolution”, either by dividing raster cells into 4 or more smaller cells, or by adding nodes in-between nodes of polygons. Imagine having polygons with soils data for a country. Let’s say that these polygons cover, on average, an area of 100 * 100 = 10,000 km². You can transfer the soil properties associated with each polygon, e.g. pH, to a raster with 1 km² spatial resolution; and now might (incorrectly) say that you have a 1 km² spatial resolution soils map. So we need to distinguish the resolution of the representation (data) and the resolution of the measurements or estimates. The lowest of the two is the one that matters.

Why does scale/resolution matter?

First of all, different processes have different spatial and temporal scales at which they operate Levin, 1992 — in this context, scale refers both to “extent” and “resolution”. Processes that operate over a larger extent (e.g., a forest) can be studied at a larger resolution (trees) whereas processes that operate over a smaller extent (e.g. a tree) may need to be studied at the level of leaves.
From a practical perspective: it affects our estimates of length and size. For example if you wanted to know the length of the coastline of Britain, you could use the length of spatial dataset representing that coastline. You could get rather different numbers depending on the data set used. The higher the resolution of the spatial data, the longer the coastline would appear to be. This is not just a problem of the representation (the data), also at a theoretical level, one can argue that the length of the coastline is not defined, as it becomes infinite if your resolution approaches zero. This is illustrated here

Resolution also affects our understanding of relationships between variables of interest. In terms of data collection this means that we want to use data to be at the highest spatial (and temporal) resolution possible (affordable). We can aggregate our data to lower resolutions, but it is not nearly as easy, or even impossible to correctly disaggregate (“downscale”) data to a higher resolution.

2.3 Zonation

Geographic data are often aggregated by zones. While we would like to have data at the most granular level that is possible or meaningful (individuals, households, plots, sites), reality is that we often can only get data that is aggregated. Rather than having data for individuals, we may have mean values for all inhabitants of a census district. Data on population, disease, income, or crop yield, is typically available for entire countries, for a number of sub-national units (e.g. provinces), or a set of raster cells.

The areas used to aggregate data are arbitrary (at least relative to the data of interest). The way the borders of the areas are drawn (how large, what shape, where) can strongly affect the patterns we see and the outcome of data analysis. This is sometimes referred to as the “Modifiable Areal Unit Problem” (MAUP). The problem of analyzing aggregated data is referred to as “Ecological Inference”.

To illustrate the effect of zonation and aggregation, I create a region with 1000 households. For each household we know where they live and what their annual income is. I then aggregate the data to a set of zones.

The income distribution data

```
set.seed(0)
x_y <- cbind(x=runif(1000, 0, 100), y=runif(1000, 0, 100))
income <- (runif(1000) * abs((x_y[,1] - 50) * (x_y[,2] - 50))) / 500
```

Inspect the data, both spatially and non-spatially. The first two plots show that there are many poor people and a few rich people. The third that there is a clear spatial pattern in where the rich and the poor live.

```
par(mfrow=c(1,3), las=1)
plot(sort(income), col=rev(terrain.colors(1000)), pch=20, cex=.75, ylab='income')
hist(income, main='', col=rev(terrain.colors(10)), xlim=c(0,5), breaks=seq(0,5,0.5))
plot(x_y, xlim=c(0,100), ylim=c(0,100), cex=income, col=rev(terrain.colors(50))[10*(income+1)])
```
Spatial Data Analysis with R

Income inequality is often expressed with the Gini coefficient.

\[
G = \frac{2 \times \sum (\text{sort}(\text{income}) \times 1:n)}{\sum (\text{income}) - (n + 1)} / n
\]

\[
G \approx 0.5814548
\]

For our data set the Gini coefficient is 0.581.

Now assume that the household data was grouped by some kind of census districts. I create different districts, in our case rectangular raster cells, and compute mean income for each district.

```
library(raster)

r1 <- raster(ncol=1, nrow=4, xmn=0, xmx=100, ymn=0, ymx=100, crs=NA)
r1 <- rasterize(xy, r1, income, mean)

r2 <- raster(ncol=4, nrow=1, xmn=0, xmx=100, ymn=0, ymx=100, crs=NA)
r2 <- rasterize(xy, r2, income, mean)

r3 <- raster(ncol=2, nrow=2, xmn=0, xmx=100, ymn=0, ymx=100, crs=NA)
r3 <- rasterize(xy, r3, income, mean)

r4 <- raster(ncol=3, nrow=3, xmn=0, xmx=100, ymn=0, ymx=100, crs=NA)
r4 <- rasterize(xy, r4, income, mean)

r5 <- raster(ncol=5, nrow=5, xmn=0, xmx=100, ymn=0, ymx=100, crs=NA)
r5 <- rasterize(xy, r5, income, mean)

r6 <- raster(ncol=10, nrow=10, xmn=0, xmx=100, ymn=0, ymx=100, crs=NA)
r6 <- rasterize(xy, r6, income, mean)
```

Have a look at the plots of the income distribution and the sub-regional averages.

```
par(mfrow=c(2,3), las=1)
plot(r1); plot(r2); plot(r3); plot(r4); plot(r5); plot(r6)
```

2.3. Zonation
It is not surprising to see that the smaller the regions get, the better the real pattern is captured. But in all cases, the histograms show that we do not capture the full income distribution (compare to the histogram with the data for individuals).

```r
par(mfrow=c(1,3), las=1)
hist(r4, main='', col=rev(terrain.colors(10)), xlim=c(0, 5), breaks=seq(0, 5, 0.5))
hist(r5, main='', col=rev(terrain.colors(10)), xlim=c(0, 5), breaks=seq(0, 5, 0.5))
hist(r6, main='', col=rev(terrain.colors(10)), xlim=c(0, 5), breaks=seq(0, 5, 0.5))
```
2.4 Distance

Distance is a numerical description of how far apart things are. It is the most fundamental concept in geography. After all, Waldo Tobler’s First Law of Geography states that “everything is related to everything else, but near things are more related than distant things”. But how far away are things? That is not always as easy a question as it seems. Of course we can compute distance “as the crow flies” but that is often not relevant. Perhaps you need to also consider national borders, mountains, or other barriers. The distance between A and B may even be asymmetric, meaning that it the distance from A to B is not the same as from B to A (for example, the President of the United States can call me, but I cannot call him (or her)); or because you go faster when walking downhill than when walking uphill.

2.4.1 Distance matrix

Distances are often described in a “distance matrix”. In a distance matrix we have a number for the distance between all objects of interest. If the distance is symmetric, we only need to fill half the matrix.

Let’s create a distance matrix from a set of points. We start with a set of points

Set up the data, using x-y coordinates for each point:

A <- c(40, 43)
B <- c(101, 1)
C <- c(111, 54)
D <- c(104, 65)
E <- c(60, 22)
F <- c(20, 2)
pts <- rbind(A, B, C, D, E, F)
pts

[,1] [,2]
A 40 43
B 101 1
C 111 54
D 104 65
E 60 22
F 20 2
Plot the points and labels:

```r
plot(pts, xlim=c(0,120), ylim=c(0,120), pch=20, cex=2, col='red', xlab='X', ylab='Y', las=1)
text(pts+5, LETTERS[1:6])
```

You can use the `dist` function to make a distance matrix with a data set of any dimension.

```r
dis <- dist(pts)
dis
##         A        B        C        D        E
## A 0.000000 74.06079 71.84706 67.67570 29.00000
## B 74.06079 0.00000 53.93515 64.07027 46.06517
## C 71.84706 53.93515 0.00000 13.03840 60.20797
## D 67.67570 64.07027 13.03840 0.00000 62.00000
## E 29.00000 46.06517 60.20797 62.00000 0.00000

We can check that for the first point using Pythagoras’ theorem.

```r
sqrt((40-101)^2 + (43-1)^2)
[1] 74.06079
```

We can transform a distance matrix into a normal matrix.

```r
D <- as.matrix(dis)
round(D)
A B C D E F
A 0 74 72 68 29 46
B 74 0 54 64 46 81
C 72 54 0 13 60 105
D 68 64 13 0 62 105
E 29 46 60 62 0 45
F 46 81 105 105 45 0
```

Distance matrices are used in all kinds of non-geographical applications. For example, they are often used to create cluster diagrams (dendograms).
**Question 4:** Show R code to make a cluster dendogram summarizing the distances between these six sites, and plot it. See \texttt{?hclust}.

### 2.4.2 Distance for longitude/latitude coordinates

Now consider that the values in \texttt{pts} were coordinates in degrees (longitude/latitude). Then the cartesian distance as computed by the \texttt{dist} function would be incorrect. In that case we can use the \texttt{pointDistance} function from the \texttt{raster} package.

```r
library(raster)
gdis <- pointDistance(pts, lonlat=\texttt{TRUE})
gdis
```

Question 5: What is the unit of the values in ``gdis''?

### 2.5 Spatial influence

An important step in spatial statistics and modelling is to get a measure of the spatial influence between geographic objects. This can be expressed as a function of adjacency or (inverse) distance, and is often expressed as a spatial weights matrix. Influence is of course very complex and cannot really be measured and it can be estimated in many ways. For example the influence between a set of polygons (countries) can be expressed as having a shared border or not (being adjacent); as the “crow-fly” distance between their centroids; or as the lengths of a shared border, and in other ways.

#### 2.5.1 Adjacency

Adjacency is an important concept in some spatial analysis. In some cases objects are considered adjacent when they “touch”, e.g. neighboring countries. In can also be based on distance. This is the most common approach when analyzing point data.

We create an adjacency matrix for the point data analysed above. We define points as “adjacent” if they are within a distance of 50 from each other. Given that we have the distance matrix \(D\) this is easy to do.

```r
a <- D < 50
```

```r
A B C D E F
A TRUE FALSE FALSE FALSE TRUE TRUE
B FALSE TRUE FALSE FALSE TRUE FALSE
C FALSE TRUE FALSE FALSE TRUE FALSE
D FALSE FALSE TRUE FALSE FALSE TRUE FALSE
E TRUE FALSE FALSE TRUE FALSE TRUE
F TRUE FALSE FALSE TRUE TRUE TRUE
```

In adjacency matrices the diagonal values are often set to \texttt{NA} (we do not consider a point to be adjacent to itself). And \texttt{TRUE}/\texttt{FALSE} values are commonly stored as \texttt{1}/\texttt{0} (this is equivalent, and we can make this change with a simple trick: multiplication with 1)

```r
diag(a) <- \texttt{NA}
Adj50 <- a * 1
```

(continues on next page)
2.5.2 Two nearest neighbours

What if you wanted to compute the “two nearest neighbours” (or three, or four) adjacency-matrix? Here is how you can do that. For each row, we first get the column numbers in order of the values in that row (that is, the numbers indicate how the values are ordered).

```r
cols <- apply(D, 1, order)
we need to transpose the result
cols <- t(cols)
```

And then get columns 2 to 3 (why not column 1?)

```r
cols <- cols[, 2:3]
cols
[,1] [,2]
A 5 6
B 5 3
C 4 2
D 3 5
E 1 6
F 5 1
```

As we now have the column numbers, we can make the row-column pairs that we want (`rowcols`).

```r
rowcols <- cbind(rep(1:6, each=2), as.vector(t(cols)))
head(rowcols)
[,1] [,2]
[1,] 1 5
[2,] 1 6
[3,] 2 5
[4,] 2 3
[5,] 3 4
[6,] 3 2
```

We use these pairs as indices to change the values in matrix `Ak3`.

```r
Ak3 <- Adj50 * 0
Ak3[rowcols] <- 1
Ak3
A B C D E F
A NA 0 0 0 1 1
B 0 NA 0 0 1 0
C 0 0 NA 1 0 0
D 0 1 NA 0 0
E 1 0 0 NA 1
F 1 0 0 0 NA
```

---

Spatial Data Analysis with R

Adj50

## A B C D E F
## A NA 0 0 0 1 1
## B 0 NA 0 1 0
## C 0 0 NA 1 0
## D 0 0 1 NA 0
## E 1 1 0 NA 1
## F 1 0 0 0 NA

(continued from previous page)
2.5.3 Weights matrix

Rather than expressing spatial influence as a binary value (adjacent or not), it is often expressed as a continuous value. The simplest approach is to use inverse distance (the further away, the lower the value).

\[
W \leftarrow \frac{1}{D}
\]

\[
\text{round}(W, 4)
\]

\[
\begin{matrix}
A & B & C & D & E & F \\
A & \text{Inf} & 0.0135 & 0.0139 & 0.0148 & 0.0345 & 0.0219 \\
B & 0.0135 & \text{Inf} & 0.0185 & 0.0156 & 0.0217 & 0.0123 \\
C & 0.0139 & 0.0185 & \text{Inf} & 0.0767 & 0.0166 & 0.0095 \\
D & 0.0148 & 0.0156 & 0.0767 & \text{Inf} & 0.0163 & 0.0095 \\
E & 0.0345 & 0.0217 & 0.0166 & 0.0163 & \text{Inf} & 0.0224 \\
F & 0.0219 & 0.0123 & 0.0095 & 0.0095 & 0.0224 & \text{Inf} \\
\end{matrix}
\]

Such as “spatial weights” matrix is often “row-normalized”, such that the sum of weights for each row in the matrix is the same. First we get rid if the Inf values by changing them to NA. (Where did the Inf values come from?)

\[
W[\texttt{!is.finite}(W)] \leftarrow \text{NA}
\]

Then compute the row sums.

\[
\text{rtot} \leftarrow \text{rowSums}(W, \text{na.rm=TRUE})
\]

\[
\begin{matrix}
A & B & C & D & E & F \\
0.09860117 & 0.08170418 & 0.13530597 & 0.13285878 & 0.11141516 & 0.07569154 \\
\end{matrix}
\]

And divide the rows by their totals and check if they row sums add up to 1.

\[
W \leftarrow W \div \text{rtot}
\]

\[
\text{rowSums}(W, \text{na.rm=TRUE})
\]

\[
\begin{matrix}
A & B & C & D & E & F \\
1 & 1 & 1 & 1 & 1 & 1 \\
\end{matrix}
\]

The values in the columns do not add up to 1.

\[
\text{colSums}(W, \text{na.rm=TRUE})
\]

\[
\begin{matrix}
A & B & C & D & E & F \\
0.9784548 & 0.7493803 & 1.2204900 & 1.1794393 & 1.1559273 & 0.7163082 \\
\end{matrix}
\]

2.5.4 Spatial influence for polygons

Above we looked at adjacency for a set of points. Here we look at it for polygons. The difference is that

\[
\text{library}(\text{raster})
\]

\[
p \leftarrow \text{shapefile}(\text{system.file}("external/lux.shp", \text{package="raster"}))
\]

To find adjacent polygons, we can use the spdep package.

\[
\text{library}(\text{spdep})
\]

We use poly2nb to create a “rook’s case” neighbors-list. And from that a neighbors matrix.

\[
\text{wr} \leftarrow \text{poly2nb}(p, \text{row.names=p$ID_2, queen=FALSE})
\]

(continues on next page)
Neighbour list object:
Number of regions: 12
Number of nonzero links: 46
Percentage nonzero weights: 31.94444
Average number of links: 3.833333

wm <- nb2mat(wr, style='B', zero.policy = TRUE)
dim(wm)
## [1] 12 12

Inspect the content or `wr` and `wm`

```
wr[1:6]
[1]
[1]
[1] 2 4 5
[2]
[1] 1 3 4 5 6 12
[3]
[1] 2 5 9 12
[4]
[1] 1 2
[5]
[1] 1 2 3
[6]
[1] 2 8 12
```

```
wm[1:6, 1:11]
1 0 1 0 0 0 0 0 0 0 0
2 1 0 1 1 1 0 0 0 0 0
3 0 1 0 0 1 0 0 0 1 0 0
4 1 1 0 0 0 0 0 0 0 0 0
5 1 1 1 0 0 0 0 0 0 0 0
6 0 1 0 0 0 0 1 0 0 0 0
```

Compute the number of neighbors for each area.

```
i <- rowSums(wm)
i
1 2 3 4 5 6 7 12 8 9 10 11
3 6 4 2 3 3 4 4 3 5 6
```

Expresses as percentage

```
round(100 * table(i) / length(i), 1)
i
2 3 4 5 6
8.3 41.7 25.0 8.3 16.7
```

Plot the links between the polygons.

```
par(mai=c(0,0,0,0))
plot(p, col='gray', border='blue')
```

(continues on next page)
Now some alternative approaches to compute “spatial influence”.

Distance based:

```r
wd10 <- dnearneigh(xy, 0, 10)
wd25 <- dnearneigh(xy, 0, 25, longlat=TRUE)
```

Nearest neighbors:

```r
k3 <- knn2nb(knearneigh(xy, k=3, RANN=FALSE))
k6 <- knn2nb(knearneigh(xy, k=6, RANN=FALSE))
Warning in knearneigh(xy, k = 6, RANN = FALSE): k greater than one-third of
the number of data points
```

Lag-two Rook:

```r
for (i in 1:length(wr)) {
 lag1 <- wr[[i]]
 lag2 <- wr[lag1]
 lag2 <- sort(unique(unlist(lag2)))
 lag2[!(lag2 %in% c(wr[[i]], i))] <- lag2
 wr2[[i]] <- lag2
}
```

And now we plot them all using the `plotit` function.
plotit <- function(nb, lab='') {
  plot(p, col='gray', border='white')
  plot(nb, xy, add=TRUE, pch=20)
  text(6.3, 50.1, paste0('(', lab, ')'), cex=1.25)
}

par(mfrow=c(2, 3), mai=c(0,0,0,0))
plotit(wr, 'adjacency')
plotit(wr2, 'lag-2 adj.')
plotit(wd10, '10 km')
plotit(wd25, '25 km')
plotit(k3, 'k=3')
plotit(k6, 'k=6')
2.5. Spatial influence
2.6 Raster based distance metrics

2.6.1 distance
2.6.2 cost distance
2.6.3 resistance distance
3.1 Introduction

Spatial autocorrelation is an important concept in spatial statistics. It is both a nuisance, as it complicates statistical tests, and a feature, as it allows for spatial interpolation. Its computation and properties are often misunderstood. This chapter discusses what it is, and how statistics describing it can be computed.

Autocorrelation (whether spatial or not) is a measure of similarity (correlation) between nearby observations. To understand spatial autocorrelation, it helps to first consider temporal autocorrelation.

3.1.1 Temporal autocorrelation

If you measure something about the same object over time, for example a person’s weight or wealth, it is likely that two observations that are close to each other in time are also similar in measurement. Say that over a couple of years your weight went from 50 to 80 kg. It is unlikely that it was 60 kg one day, 50 kg the next and 80 the day after that. Rather it probably went up gradually, with the occasional tapering off, or even reverse in direction. The same may be true with your bank account, but that may also have a marked monthly trend. To measure the degree of association over time, we can compute the correlation of each observation with the next observation.

Let \(d\) be a vector of daily observations.

```r
set.seed(0)
d <- sample(100, 10)
d
#> [1] 90 27 37 56 88 20 85 96 61 58
```

Compute auto-correlation.

```r
a <- d[-length(d)]
b <- d[-1]
plot(a, b, xlab='t', ylab='t-1')
```
The autocorrelation computed above is very small. Even though this is a random sample, you (almost) never get a value of zero. We computed the “one-lag” autocorrelation, that is, we compare each value to its immediate neighbour, and not to other nearby values.

After sorting the numbers in \( d \) autocorrelation becomes very strong (unsurprisingly).

```r
cor(a, b)
[1] -0.2222057
```

```r
d <- sort(d)
d
[1] 20 27 37 56 58 61 85 88 90 96
a <- d[-length(d)]
b <- d[-1]
plot(a, b, xlab='t', ylab='t-1')
```
The `acf` function shows autocorrelation computed in a slightly different way for several lags (it is 1 to each point itself, very high when comparing with the nearest neighbour, and than tapering off).
3.1.2 Spatial autocorrelation

The concept of spatial autocorrelation is an extension of temporal autocorrelation. It is a bit more complicated though. Time is one-dimensional, and only goes in one direction, ever forward. Spatial objects have (at least) two dimensions and complex shapes, and it may not be obvious how to determine what is “near”.

Measures of spatial autocorrelation describe the degree to which observations (values) at spatial locations (whether they are points, areas, or raster cells), are similar to each other. So we need two things: observations and locations.

Spatial autocorrelation in a variable can be exogenous (it is caused by another spatially autocorrelated variable, e.g. rainfall) or endogenous (it is caused by the process at play, e.g. the spread of a disease).

A commonly used statistic that describes spatial autocorrelation is Moran’s $I$, and we’ll discuss that here in detail. Other indices include Geary’s $C$ and, for binary data, the join-count index. The semi-variogram also expresses the amount of spatial autocorrelation in a data set (see the chapter on interpolation).

3.2 Example data

Read the example data

```R
library(raster)
p <- shapefile(system.file("external/lux.shp", package="raster"))
p <- p[p$NAME_1=="Diekirch",]
```

(continues on next page)
Let’s say we are interested in spatial autocorrelation in variable “AREA”. If there were spatial autocorrelation, regions of a similar size would be spatially clustered.

Here is a plot of the polygons. I use the `coordinates` function to get the centroids of the polygons to place the labels.

```r
p$value <- c(10, 6, 4, 11, 6)
data.frame(p)
ID_1 NAME_1 ID_2 NAME_2 AREA value
0 1 Diekirch 1 Clervaux 312 10
1 1 Diekirch 2 Diekirch 218 6
2 1 Diekirch 3 Redange 259 4
3 1 Diekirch 4 Vianden 76 11
4 1 Diekirch 5 Wiltz 263 6
```
3.3 Adjacent polygons

Now we need to determine which polygons are “near”, and how to quantify that. Here we’ll use adjacency as criterion. To find adjacent polygons, we can use package ‘spdep’.

```r
library(spdep)
w <- poly2nb(p, row.names=p$Id)
class(w)
[1] "nb"
summary(w)
Neighbour list object:
Number of regions: 5
Number of nonzero links: 14
Percentage nonzero weights: 56
Average number of links: 2.8
Link number distribution:
##
2 3 4
2 2 1
2 least connected regions:
2 3 with 2 links
1 most connected region:
1 with 4 links
```

`summary(w)` tells us something about the neighborhood. The average number of neighbors (adjacent polygons) is 2.8. 3 polygons have 2 neighbors and 1 has 4 neighbors (which one is that?).

For more details we can look at the structure of `w`.

```r
str(w)
List of 5
##$: int [1:3] 2 4 5
##$: int [1:4] 1 3 4 5
##$: int [1:2] 2 5
##$: int [1:2] 1 2
##$: int [1:3] 1 2 3
- attr(*, "class")= chr "nb"
- attr(*, "region.id")= chr [1:5] "0" "1" "2" "3" ...
- attr(*, "call")= language poly2nb(p1 = p, row.names = p$Id)
- attr(*, "type")= chr "queen"
- attr(*, "sym")= logi TRUE
```

**Question 1:** Explain the meaning of the first 5 lines returned by `str(w)`

Plot the links between the polygons.

```r
plot(p, col='gray', border='blue', lwd=2)
plot(w, xy, col='red', lwd=2, add=TRUE)
```
We can transform \( w \) into a spatial weights matrix. A spatial weights matrix reflects the intensity of the geographic relationship between observations (see previous chapter).

\[
wm <- \text{nb2mat}(w, \text{style} = \text{"B"})
\]

Yes, that looks impressive. But it is not much more than an expanded version of the formula to compute the correlation coefficient. The main thing that was added is the spatial weights matrix.

### 3.4 Compute Moran’s \( I \)

Now let’s compute Moran’s index of spatial autocorrelation

\[
I = \frac{n}{\sum_{i=1}^{n}(y_i - \bar{y})^2} \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} (y_i - \bar{y})(y_j - \bar{y})}{\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij}}
\]

Yes, that looks impressive. But it is not much more than an expanded version of the formula to compute the correlation coefficient. The main thing that was added is the spatial weights matrix.
The number of observations

\[ n \leftarrow \text{length}(p) \]

Get ‘y’ and ‘ybar’ (the mean value of y)

\[ y \leftarrow p$value \]
\[ ybar \leftarrow \text{mean}(y) \]

Now we need

\[ (y_i - \bar{y})(y_j - \bar{y}) \]

That is, \((y_i-ybar)(y_j-ybar)\) for all pairs. I show two methods to get that.

**Method 1:**

\[ dy \leftarrow y - ybar \]
\[ g \leftarrow \text{expand.grid}(dy, dy) \]
\[ yiyj \leftarrow g[,1] \times g[,2] \]

**Method 2:**

\[ yi \leftarrow \text{rep}(dy, \text{each}=n) \]
\[ yj \leftarrow \text{rep}(dy) \]
\[ yiyj \leftarrow yi \times yj \]

Make a matrix of the multiplied pairs

\[ pm \leftarrow \text{matrix}(iyij, \text{ncol}=n) \]

And multiply this matrix with the weights to set to zero the value for the pairs that are not adjacent.

\[ pmw \leftarrow pm \times w \]

\[
\begin{bmatrix}
0 & -3.64 & 4.76 & -5.04 & 1.96 \\
-3.64 & 0 & 4.76 & -5.04 & 1.96 \\
4.76 & 0 & 0 & 0 & 4.76 \\
-5.04 & 4.76 & 0 & 0 & 0 \\
1.96 & -5.04 & 0 & 0 & 0 \\
\end{bmatrix}
\]

\# attr(,"call")
\# nb2mat(neighbours = w, style = "B")

We now sum the values, to get this bit of Moran’s I:

\[
\frac{\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij}(y_i - \bar{y})(y_j - \bar{y})}{\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij}}
\]

\[ spmw \leftarrow \text{sum}(pmw) \]

\[ spmw \]

\[ \# [1] \ 17.04 \]

The next step is to divide this value by the sum of weights. That is easy.

\[ smw \leftarrow \text{sum}(wm) \]
\[ sw \leftarrow spmw / smw \]
And compute the inverse variance of y

\[ vr <- n / \text{sum}(dy^2) \]

The final step to compute Moran’s I

\[ MI <- vr \times sw \]

\[ MI \]
\[ ## [1] 0.1728896 \]

This is a simple (but crude) way to estimate the expected value of Moran’s I. That is, the value you would get in the absence of spatial autocorelation (if the data were spatially random). Of course you never really expect that, but that is how we do it in statistics. Note that the expected value approaches zero if \( n \) becomes large, but that it is not quite zero for small values of \( n \).

\[ EI <- -1/(n-1) \]

\[ EI \]
\[ ## [1] -0.25 \]

After doing this ‘by hand’, now let’s use the spdep package to compute Moran’s I and do a significance test. To do this we need to create a ‘listw’ type spatial weights object (instead of the matrix we used above). To get the same value as above we use “style=’B’” to use binary (TRUE/FALSE) distance weights.

\[ \text{ww <- nb2listw(w, style='B')} \]

\[ \text{ww} \]
\[ ## Characteristics of weights list object: \]
\[ ## Neighbour list object: \]
\[ ## Number of regions: 5 \]
\[ ## Number of nonzero links: 14 \]
\[ ## Percentage nonzero weights: 56 \]
\[ ## Average number of links: 2.8 \]
\[ ## \# \#
## Weights style: B
## Weights constants summary:
## n nn S0 S1 S2
## B 5 25 14 28 168 \]

Now we can use the \text{moran} function. Have a look at ‘?moran’. The function is defined as ‘moran(y, ww, n, Szero(ww))’. Note the odd arguments n and S0. I think they are odd, because “ww” has that information. Anyway, we supply them and it works. There probably are cases where it makes sense to use other values.

\[ \text{moran(y$value, ww, n=\text{length}(ww$neighbours), S0=Szero(ww))} \]

\[ ## $I \]
\[ ## [1] 0.1728896 \]
\[ ## $K \]
\[ ## [1] 1.432464 \]

#Note that

\[ \text{Szero(ww)} \]
\[ ## [1] 14 \]

# is the same as

\[ \text{pmw} \]
\[ ## 0 0.00 -3.64 0.00 9.36 -3.64 \]
\[ ## 1 -3.64 0.00 4.76 -5.04 1.96 \]
\[ ## 2 0.00 4.76 0.00 0.00 4.76 \]

(continues on next page)
Now we can test for significance. First analytically, using linear regression based logic and assumptions.

```r
moran.test(p$value, ww, randomisation=FALSE)
```

```
Moran I test under normality
data: p$value
weights: ww
Moran I statistic standard deviate = 2.3372, p-value = 0.009714
alternative hypothesis: greater
sample estimates:
Moran I statistic Expectation Variance
0.1728896 -0.2500000 0.0327381
```

Instead of the approach above you should use Monte Carlo simulation. That is the preferred method (in fact, the only good method). The way it works that the values are randomly assigned to the polygons, and the Moran’s $I$ is computed. This is repeated several times to establish a distribution of expected values. The observed value of Moran’s $I$ is then compared with the simulated distribution to see how likely it is that the observed values could be considered a random draw.

```r
moran.mc(p$value, ww, nsim=99)
```

```
Monte-Carlo simulation of Moran I
data: p$value
weights: ww
number of simulations + 1: 100
statistic = 0.17289, observed rank = 96, p-value = 0.04
alternative hypothesis: greater
```

**Question 2:** How do you interpret these results (the significance tests)?

Also try this code, it gives an error: `moran.mc(p$value, ww, nsim=999)`

**Question 3:** What is the maximum value we can use for `nsim`?

We can make a “Moran scatter plot” to visualize spatial autocorrelation. We first get the neighbouring values for each value.

```r
n <- length(p)
ms <- cbind(id=rep(1:n, each=n), y=rep(y, each=n), value=as.vector(wm * y))
```

Remove the zeros

```r
ms <- ms[ms[,3] > 0,]
```

And compute the average neighbour value
ams <- aggregate(ms[,2:3], list(ms[,1]), FUN=mean)
am <- ams[, -1]
colnames(ams) <- c('y', 'spatially lagged y')
head(ams)
##        y spatially lagged y
## 1       10               7.666667
## 2       6                7.750000
## 3       4                6.000000
## 4      11                 8.000000
## 5       6               6.666667

Finally, the plot.

plot(ams)
reg <- lm(ams[,2] ~ ams[,1])
abline(reg, lwd=2)
abline(h=mean(ams[,2]), lty=2)
abline(v=ybar, lty=2)

Note that the slope of the regression line:

coefficients(reg)[2]
## ams[, 1]
## 0.2315341

3.4. Compute Moran's I
is almost the same as Moran’s $I$.

Here is a more direct approach to accomplish the same thing (but hopefully the above makes it clearer how this is actually computed). Note the row standardisation of the weights matrix:

```
rwm <- mat2listw(wm, style='W')
Checking if rows add up to 1
mat <- listw2mat(rwm)
apply(mat, 1, sum)[1:15]
```

Now we can plot

```
moran.plot(y, rwm)
```

---

**Question 4:** Show how to use the ‘geary’ function to compute Geary’s $C$

**Question 5:** Write your own Monte Carlo simulation test to compute p-values for Moran’s $I$, replicating the results we obtained with the function from spdep. Show a histogram of the simulated values.

**Question 6:** Write your own Geary C function, by completing the function below

```
gearyC <- ((n-1)/sum(("---")^2)) * sum(wm * ("---")^2) / (2 * sum(wm))
```

---

28 Chapter 3. Spatial autocorrelation
CHAPTER
FOUR

INTERPOLATION

4.1 Introduction

Almost any variable of interest has spatial autocorrelation. That can be a problem in statistical tests, but it is a
very useful feature when we want to predict values at locations where no measurements have been made; as we
can generally safely assume that values at nearby locations will be similar. There are several spatial interpolation
techniques. We show some of them in this chapter.

4.2 Temperature in California

We will be working with temperature data for California. If have not yet done so, first install the rspatial package to
get the data. You may need to install the devtools package first.

```r
if (!require("rspatial")) devtools::install_github("rspatial/rspatial")
Loading required package: rspatial
```

Now get the data

```r
library(rspatial)
d <- sp_data('precipitation')
head(d)
```

```
ID NAME LAT LONG ALT JAN FEB MAR APR MAY JUN
1 ID741 DEATH VALLEY 36.47 -116.87 -59 7.4 9.5 7.5 3.4 1.7 1.0
2 ID743 THERMAL/FAA AIRPORT 33.63 -116.17 -34 9.2 6.9 7.9 1.8 1.6 0.4
3 ID744 BRAWLEY 2SW 32.96 -115.55 -31 11.3 8.3 7.6 2.0 0.8 0.1
4 ID753 IMPERIAL/FAA AIRPORT 32.83 -115.57 -18 10.6 7.0 6.1 2.5 0.2 0.0
5 ID754 NILAND 33.28 -115.51 -18 9.0 8.0 9.0 3.0 0.0 1.0
6 ID758 EL CENTRO/NAF 32.82 -115.67 -13 9.8 1.6 3.7 3.0 0.4 0.0
JUL AUG SEP OCT NOV DEC
1 3.7 2.8 4.3 2.2 4.7 3.9
2 1.9 3.4 5.3 2.0 6.3 5.5
3 1.9 9.2 6.5 5.0 4.8 9.7
4 2.4 2.6 8.3 5.4 7.7 7.3
5 8.0 9.0 7.0 8.0 7.0 9.0
6 3.0 10.8 0.2 0.0 3.3 1.4
```

Compute annual precipitation

```r
d$prec <- rowSums(d[, c(6:17)])
plot(sort(d$prec), ylab='Annual precipitation (mm)', las=1, xlab='Stations')
```
Now make a quick map.

```r
library(sp)
dsp <- SpatialPoints(d[,4:3], proj4string=CRS("+proj=longlat +datum=NAD83"))
dsp <- SpatialPointsDataFrame(dsp, d)
CA <- sp_data("counties")

define groups for mapping
cuts <- c(0,200,300,500,1000,3000)
set up a palette of interpolated colors
blues <- colorRampPalette(c('yellow', 'orange', 'blue', 'dark blue'))
pols <- list("sp.polygons", CA, fill = "lightgray")
spplot(dsp, 'prec', cuts=cuts, col.regions=blues(5), sp.layout=pols, pch=20, cex=2)
```
Transform longitude/latitude to planar coordinates, using the commonly used coordinate reference system for California ("Teale Albers") to assure that our interpolation results will align with other data sets we have.

```
TA <- CRS("+proj=aea +lat_1=34 +lat_2=40.5 +lat_0=0 +lon_0=-120 +x_0=0 +y_0=-4000000 +datum=NAD83 +units=m +ellps=GRS80 +towgs84=0,0,0")
library(rgdal)
dta <- spTransform(dsp, TA)
cata <- spTransform(CA, TA)
```

### 4.2.1 9.2 NULL model

We are going to interpolate (estimate for unsampled locations) the precipitation values. The simplest way would be to take the mean of all observations. We can consider that a “Null-model” that we can compare other approaches to. We’ll use the Root Mean Square Error (RMSE) as evaluation statistic.

```
RMSE <- function(observed, predicted) {
 sqrt(mean((predicted - observed)^2, na.rm=TRUE))
}
```

Get the RMSE for the Null-model

```
null <- RMSE(mean(dsp$prec), dsp$prec)
null
#> [1] 435.3217
```
4.2.2 proximity polygons

Proximity polygons can be used to interpolate categorical variables. Another term for this is “nearest neighbour” interpolation.

```r
library(dismo)
v <- voronoi(dta)
plot(v)
```

Looks weird. Let’s confine this to California

```r
c <- aggregate(cata)
vca <- intersect(v, c)
spplot(vca, 'prec', col.regions=rev(get_col_regions()))
```
Much better. These are polygons. We can ‘rasterize’ the results like this.

```r
r <- raster(cata, res=10000)
vr <- rasterize(vca, r, 'prec')
plot(vr)
```
Now evaluate with 5-fold cross validation.

```r
set.seed(5132015)
kf <- kfold(nrow(dta))

rmse <- rep(NA, 5)
for (k in 1:5) {
 test <- dta[kf == k,]
 train <- dta[kf != k,]
 v <- voronoi(train)
 p <- extract(v, test)
 rmse[k] <- RMSE(test$prec, p$prec)
}

rmse
[1] 199.0686 187.8069 166.9153 191.0938 238.9696

mean(rmse)
[1] 196.7708

1 - (mean(rmse) / null)
[1] 0.5479875
```

**Question 1:** Describe what each step in the code chunk above does

**Question 2:** How does the proximity-polygon approach compare to the NULL model?

**Question 3:** You would not typically use proximity polygons for rainfall data. For what kind of data would you use them?
4.2.3 Nearest neighbour interpolation

Here we do nearest neighbour interpolation considering multiple (5) neighbours.

We can use the gstat package for this. First we fit a model. ~1 means “intercept only”. In the case of spatial data, that would be only ‘x’ and ‘y’ coordinates are used. We set the maximum number of points to 5, and the “inverse distance power” idp to zero, such that all five neighbors are equally weighted

```r
library(gstat)

gs <- gstat(formula=prec~1, locations=dta, nmax=5, set=list(idp = 0))
nn <- interpolate(r, gs)
[inverse distance weighted interpolation]
nnmsk <- mask(nn, vr)
plot(nnmsk)
```

Cross validate the result. Note that we can use the predict method to get predictions for the locations of the test points.

```r
rmsenn <- rep(NA, 5)
for (k in 1:5) {
 test <- dta[kf == k,]
 train <- dta[kf != k,]
 gscv <- gstat(formula=prec~1, locations=train, nmax=5, set=list(idp = 0))
 p <- predict(gscv, test)$var1.pred
 rmsenn[k] <- RMSE(test$prec, p)
```

(continues on next page)
4.2.4 Inverse distance weighted

A more commonly used method is “inverse distance weighted” interpolation. The only difference with the nearest neighbour approach is that points that are further away get less weight in predicting a value at a location.

```r
library(gstat)
gs <- gstat(formula=prec~1, locations=dta)
idw <- interpolate(r, gs)
[inverse distance weighted interpolation]
idwr <- mask(idw, vr)
plot(idwr)
```
Question 4: IDW generated rasters tend to have a noticeable artefact. What is that?

Cross validate. We can predict to the locations of the test points.

```r
rmse <- rep(NA, 5)
for (k in 1:5) {
 test <- dta[kf == k,]
 train <- dta[kf != k,]
 gs <- gstat(formula=prec~1, locations=train)
 p <- predict(gs, test)
 rmse[k] <- RMSE(test$prec, p$var1.pred)
}
```

Question 5: Inspect the arguments used for and make a map of the IDW model below. What other name could you
give to this method (IDW with these parameters)? Why?

```r
gs2 <- gstat(formula=prec~1, locations=dta, nmax=1, set=list(idp=1))
```

### 4.3 California Air Pollution data

We use California Air Pollution data to illustrate geostatistical (Kriging) interpolation.

#### 4.3.1 Data preparation

We use the airqual dataset to interpolate ozone levels for California (averages for 1980-2009). Use the variable OZDLYAV (unit is parts per billion). Original data source.

Read the data file. To get easier numbers to read, I multiply OZDLYAV with 1000

```r
x <- sp_data("airqual.csv")
x$OZDLYAV <- x$OZDLYAV * 1000
```

Create a SpatialPointsDataFrame and transform to Teale Albers. Note the units=km which was needed to fit the variogram.

```r
library(sp)
coordinates(x) <- ~LONGITUDE + LATITUDE
proj4string(x) <- CRS(’+proj=longlat +datum=NAD83’)
TA <- CRS(”+proj=aea +lat_1=34 +lat_2=40.5 +lat_0=0 +lon_0=-120 +x_0=0 +y_0=-4000000, +datum=NAD83 +units=km +ellps=GRS80”)
library(rgdal)
aq <- spTransform(x, TA)
```

Create an template raster to interpolate to. E.g., given a SpatialPolygonsDataFrame of California, ‘ca’. Coerce that to a ‘SpatialGrid’ object (a different representation of the same idea)

```r
cageo <- sp_data(’counties.rds’)
ca <- spTransform(cageo, TA)
r <- raster(ca)
res(r) <- 10 # 10 km if your CRS's units are in km
g <- as(r, 'SpatialGrid')
```

#### 4.3.2 Fit a variogram

Use gstat to create an emperical variogram ‘v’

```r
library(gstat)
gs <- gstat(formula=OZDLYAV~1, locations=aq)
v <- variogram(gs, width=20)
head(v)
```

```r
np dist gamma dir.hor dir.ver id
1 1010 11.35040 34.80579 0 0 var1
2 1806 30.63737 47.52591 0 0 var1
3 2355 50.58656 67.26548 0 0 var1
4 2619 70.10411 80.92707 0 0 var1
5 2967 90.13917 88.93653 0 0 var1
6 3437 110.42302 84.13589 0 0 var1
```

plot(v)
Now, fit a model variogram

```r
fve <- fit.variogram(v, vgm(85, "Exp", 75, 20))
fve
model psill range
1 Nug 21.96600 0.00000
2 Exp 85.52957 72.31404
plot(variogramLine(fve, 400), type='l', ylim=c(0,120))
points(v[,2:3], pch=20, col='red')
```
Try a different type (spherical in stead of exponential)

```r
defs <- fit.variogram(v, vgm(85, "Sph", 75, 20))
defs
model psill range
1 Nug 25.57019 0.0000
2 Sph 72.65881 135.7744
plot(variogramLine(defs, 400), type='l', ylim=c(0,120), col='blue', lwd=2)
points(v[,2:3], pch=20, col='red')
```
Both look pretty good in this case.

Another way to plot the variogram and the model

```r
plot(v, fve)
```
4.3.3 Ordinary kriging

Use variogram `fve` in a kriging interpolation

```r
k <- gstat(formula=OZDLYAV~1, locations=aq, model=fve)
predicted values
kp <- predict(k, g)
[using ordinary kriging]
spplot(kp)
```
# variance
ok <- brick(kp)
ok <- mask(ok, ca)
names(ok) <- c('prediction', 'variance')
plot(ok)

4.3.4 Compare with other methods

Let’s use gstat again to do IDW interpolation. The basic approach first.

```r
library(gstat)
idm <- gstat(formula=OZDLYAV~1, locations=aq)
idp <- interpolate(r, idm)
```

(continues on next page)
We can find good values for the idw parameters (distance decay and number of neighbours) through optimization. For simplicity’s sake I do not do that k times here. The optim function may be a bit hard to grasp at first. But the essence is simple. You provide a function that returns a value that you want to minimize (or maximize) given a number of unknown parameters. Your provide initial values for these parameters, and optim then searches for the optimal values (for which the function returns the lowest number).

```r
[inverse distance weighted interpolation]
idp <- mask(idp, ca)
plot(idp)
```

```r
RMSE <- function(observed, predicted) {
 sqrt(mean((predicted - observed)^2, na.rm=TRUE))
}

f1 <- function(x, test, train) {
 nmx <- x[1]
 idp <- x[2]
 if (nmx < 1) return(Inf)
 if (idp < .001) return(Inf)
 m <- gstat(formula=OZDLYAV~1, locations=train, nmax=nmx, set=list(idp=idp))
 p <- predict(m, newdata=test, debug.level=0)$var1.pred
 RMSE(test$OZDLYAV, p)
}
```

(continues on next page)
```r
set.seed(20150518)
i <- sample(nrow(aq), 0.2 * nrow(aq))
tst <- aq[i,]
trn <- aq[-i,]
opt <- optim(c(8, .5), f1, test=tst, train=trn)
opt
$par
[1] 9.1569933 0.4521968
##
$value
[1] 7.28701
##
$counts
function gradient
41 NA
##
$convergence
[1] 0
##
$message
NULL
```

Our optimal IDW model

```r
m <- gstat(formula=OZDLYAV~1, locations=aq, nmax=opt$par[1], set=list(idp=opt$par[2]))
idw <- interpolate(r, m)
[inverse distance weighted interpolation]
idw <- mask(idw, ca)
plot(idw)
```

4.3. California Air Pollution data
A thin plate spline model

```r
library(fields)
m <- Tps(coordinates(aq), aq$OZDLYAV)
tps <- interpolate(r, m)
tps <- mask(tps, idw)
plot(tps)
```
4.3.5 Cross-validate

Cross-validate the three methods (IDW, Ordinary kriging, TPS) and add RMSE weighted ensemble model.

```r
library(dismo)

nfolds <- 5
k <- kfold(aq, nfolds)
ensrmse <- tpsrmse <- krigmse <- idwrmse <- rep(NA, 5)

for (i in 1:nfolds) {
 test <- aq[k!=i,]
 train <- aq[k==i,]
 m <- gstat(formula=OZDLYAV~1, locations=train, nmax=opt$par[1], set=list(idp=opt$par[2]))
 p1 <- predict(m, newdata=test, debug.level=0)$var1.pred
 idwrmse[i] <- RMSE(test$OZDLYAV, p1)

 m <- gstat(formula=OZDLYAV~1, locations=train, model=fve)
 p2 <- predict(m, newdata=test, debug.level=0)$var1.pred
 krigmse[i] <- RMSE(test$OZDLYAV, p2)

 m <- Tps(coordinates(train), train$OZDLYAV)
 tpsrmse[i] <- RMSE(test$OZDLYAV, p2)
}
```

(continues on next page)
p3 <- predict(m, coordinates(test))
tpsrmse[i] <- RMSE(test$OZDLYAV, p3)

w <- c(idwrmse[i], krigrmse[i], tpsrmse[i])
weights <- w / sum(w)
ensrmse[i] <- RMSE(test$OZDLYAV, ensemble)
}

rmi <- mean(idwrmse)
rmk <- mean(krigrmse)
rmt <- mean(tpsrmse)
rms <- c(rmi, rmt, rmk)
rms
#> [1]  7.925989  8.816963  7.588549
rme <- mean(ensrmse)
rme
#> [1]  7.718896

Question 6: Which method performed best?

We can use the rmse scores to make a weighted ensemble. Let’s look at the maps

weights <- (rms / sum(rms))
s <- stack(idw, ok[[1]], tps)
ensemble <- sum(s * weights)

And compare maps.

s <- stack(idw, ok[[1]], tps, ensemble)
names(s) <- c('IDW', 'OK', 'TPS', 'Ensemble')
plot(s)
Question 7: Show where the largest difference exist between IDW and OK.

Question 8: Show where the difference between IDW and OK is within the 95% confidence limit of the OK prediction.

Question 9: Can you describe the pattern we are seeing, and speculate about what is causing it?
This page shows how you can use the Random Forest algorithm to make spatial predictions. This approach is widely used, for example to classify remote sensing data into different land cover classes. But here our objective is to predict the entire range of a species based on a set of locations where it has been observed. As an example, we use the hominid species *Imaginus magnapedum* (also known under the vernacular names of “bigfoot” and “sasquatch”). This species is so hard to find (at least by scientists) that its very existence is commonly denied by the mainstream media! For more information about this controversy, see the article by Lozier, Aniello and Hickerson: Predicting the distribution of Sasquatch in western North America: anything goes with ecological niche modelling.

We want to find out

a) What the complete range of the species might be.

b) How good (general) our model is by predicting the range of the Eastern sub-species, with data from the Western sub-species.

c) Predict where in Mexico the creature is likely to occur.

d) How climate change might affect its distribution.

In this context, this type of analysis is often referred to as ‘species distribution modeling’ or ‘ecological niche modeling’. Here is a more in-depth discussion of this technique.

## 5.1 Data

### 5.1.1 Observations

```r
if (!require("rspatial")) devtools::install_github("rspatial/rspatial")
library(rspatial)
bf <- sp_data('bigfoot')
dim(bf)
[1] 3092 3
head(bf)
lon lat Class
1 -142.9000 61.50000 A
2 -132.7982 55.18720 A
3 -132.8202 55.20350 A
4 -141.5667 62.93750 A
5 -149.7853 61.05950 A
6 -141.3165 62.77335 A
```

Plot the locations

```r
plot(bf[,1:2], cex=0.5, col='red')
library(maptools)
```

(continues on next page)
## Checking rgeos availability: TRUE

data(wrld_simpl)
plot(wrld_simpl, add=TRUE)

5.1.2 Predictors

Supervised classification often uses predictor data obtained from satellite remote sensing. But here, as is common in species distribution modeling, we use climate data. Specifically, we use ‘bioclimatic variables’, see: http://www.worldclim.org/bioclim

```r
library(raster)
w <- raster::getData('worldclim', res=10, var='bio')
plot(w[[c(1, 12)]], nr=2)
```

Chapter 5. Spatial distribution models
Now extract climate data for the locations of our observations. That is, get data about the climate that the species likes, apparently.

\[
bfc \leftarrow \text{extract}\left(\text{wc, bf[,\{1,2\}}\right)
\]
\[
\text{head}(\text{bfc})
\]
\[
\begin{array}{c}
\text{bio1} \quad \text{bio2} \quad \text{bio3} \quad \text{bio4} \quad \text{bio5} \quad \text{bio6} \quad \text{bio7} \quad \text{bio8} \quad \text{bio9} \quad \text{bio10} \quad \text{bio11} \quad \text{bio12} \quad \text{bio13} \\
\text{bio14} \quad \text{bio15} \quad \text{bio16} \quad \text{bio17} \quad \text{bio18} \quad \text{bio19} \\
\end{array}
\]
\[
\begin{array}{c}
\{1,\} \quad -14 \quad 102 \quad 27 \quad 9672 \quad 174 \quad -197 \quad 371 \quad 51 \quad -11 \quad 108 \quad -137 \quad 973 \quad 119 \\
\{2,\} \quad 62 \quad 55 \quad 31 \quad 4136 \quad 157 \quad -17 \quad 174 \quad 43 \quad 98 \quad 118 \quad 15 \quad 2602 \quad 385 \\
\{3,\} \quad 62 \quad 55 \quad 31 \quad 4136 \quad 157 \quad -17 \quad 174 \quad 43 \quad 98 \quad 118 \quad 15 \quad 2602 \quad 385 \\
\{4,\} \quad -57 \quad 125 \quad 23 \quad 15138 \quad 206 \quad -332 \quad 538 \quad 127 \quad -129 \quad 127 \quad -256 \quad 282 \quad 67 \\
\{5,\} \quad 10 \quad 80 \quad 25 \quad 8308 \quad 174 \quad -140 \quad 314 \quad 66 \quad 5 \quad 119 \quad -91 \quad 532 \quad 81 \\
\{6,\} \quad -59 \quad 128 \quad 23 \quad 14923 \quad 204 \quad -334 \quad 538 \quad 122 \quad -130 \quad 122 \quad -255 \quad 322 \quad 75 \\
\{7,\} \quad 6 \quad 81 \quad 163 \quad 22 \quad 163 \quad 27 \\
\{8,\} \quad 22 \quad 41 \quad 215 \quad 72 \quad 159 \quad 117 \\
\end{array}
\]

# Any missing values?
\[
i \leftarrow \text{which}(\text{is.na}(\text{bfc[,1]}))
\]
\[
i
\]
\[
\begin{array}{c}
\{1\} \quad 862 \quad 2667
\end{array}
\]
Here is a plot that illustrates a component of the ecological niche of our species of interest.

```r
plot(bfc[, 'bio1'] / 10, bfc[, 'bio12'], xlab='Annual mean temperature (C)',
 ylab='Annual precipitation (mm)')
```
5.1.3 Background data

Normally, one would build a model that would compare the values of the predictor variables as the locations where something was observed, with those values at the locations where it was not observed. But we do not have data from a systematic survey that determined presence and absence. We have presence-only data. (And, determining absence is not that simple. It is here now, it is gone tomorrow).

The common trick to deal with this is to not model presence versus absence, but presence versus a ‘random expectation’. This random expectation (also referred to as ‘background’, or ‘random-absence’ data) is what you would get if the species had no preference for any of the predictor variables (or to other variables that are not in the model, but correlated with the predictor variables).

There is not much point in taking absence data from very far away (tropical Africa or Antarctica). Typically they are taken from more or less the entire study area for which we have presences data.

```
library(dismo)
extent of all points
e <- extent(SpatialPoints(bf[, 1:2]))
e
class : Extent
xmin : -156.75
xmax : -64.4627
ymin : 25.141
ymax : 69.5
```
5.1.4 Combine presence and background

```r
5.1.4 Combine presence and background

d <- rbind(cbind(pa=1, bfc), cbind(pa=0, bg))
d <- data.frame(d)
dim(d)
[1] 8092 20
```

5.2 Fit a model

Now we have the data to fit a model. But I am going to split the data into East and West. Let's say I believe these are actually are different, albeit related, sub-species (The Eastern Sasquatch is darker and less hairy). I am principally interested in the western sub-species.

```r
de <- d[bf[,1] > -102,]
dw <- d[bf[,1] <= -102,]
```

5.2.1 CART

Let's first look at a Classification and Regression Trees (CART) model.

```r
library(rpart)
cart <- rpart(pa~., data=dw)
predict(cart)
```

(continues on next page)
And here is the tree

```r
plot(cart, uniform=TRUE, main="Regression Tree")
text(cart, use.n=TRUE, all=TRUE, cex=.8)
text(cart, cex=.8, digits=1)
```
Question 1: Describe the conditions under which you have the highest probability of finding our beloved species?

5.2.2 Random Forest

CART gives us a nice result to look at that can be easily interpreted (as you just illustrated with your answer to Question 1). But the approach suffers from high variance (meaning that the model will be over-fit, it is different each time a somewhat different datasets are used). Random Forest does not have that problem as much. Above, with CART, we use regression, let’s do both regression and classification here. First classification.

```r
data(wv) # Load the dataset

library(randomForest)
randomForest 4.6-14
Type rfNews() to see new features/changes/bug fixes.
create a factor to indicated that we want classification
fpa <- as.factor(dw[, 'pa'])

Now fit the RandomForest model

```r
crf <- randomForest(dw[, 2:ncol(dw)], fpa)
crf
## Call:
## randomForest(x = dw[, 2:ncol(dw)], y = fpa)
## Type of random forest: classification
## Number of trees: 500
```

(continues on next page)
The variable importance plot shows which variables are most important in fitting the model. This is computing by randomizing each variable one by one and then computing the decline in model prediction.

```
varImpPlot(crf)
```
Now we use regression, rather than classification. First we tune a parameter.

```r
trf <- tuneRF(dw[, 2:ncol(dw)], dw[, 'pa'])
## Warning in randomForest.default(x, y, mtry = mtryStart, ntree = ntreeTry, :
## The response has five or fewer unique values. Are you sure you want to do
## regression?
## mtry = 6  OOB error = 0.07100579
## Searching left ...
## Warning in randomForest.default(x, y, mtry = mtryCur, ntree = ntreeTry, :
## The response has five or fewer unique values. Are you sure you want to do
## regression?
## mtry = 3  OOB error = 0.07010267
## 0.01271897 0.05
## Searching right ...
## Warning in randomForest.default(x, y, mtry = mtryCur, ntree = ntreeTry, :
## The response has five or fewer unique values. Are you sure you want to do
## regression?
## mtry = 12 OOB error = 0.0708133
## 0.002710948 0.05
```
Question 2: What did tuneRF help us find? What does the values of mt represent?

```
rf <- randomForest(dw[, 2:ncol(d)], dw[, "pa"], mtry=mt)
## Warning in randomForest.default(dw[, 2:ncol(d)], dw[, "pa"], mtry = mt): 
## The response has five or fewer unique values. Are you sure you want to do 
## regression?
rf
```

(continues on next page)
% Var explained: 70.81
plot(rrf)

varImpPlot(rrf)
5.3 Predict

We can use the model to make predictions to any other place for which we have values for the predictor variables. Our climate data is global so we could find suitable places for bigfoot in Australia. At first I only want to predict to our study region, which I define as follows.

```r
# Extent of the western points
ew <- extent(SpatialPoints(bf[,1] <= -102, 1:2))
```

5.3.1 Regression

```r
rp <- predict(wc, rrf, ext=ew)
plot(rp)
```
Note that the regression predictions are well-behaved, in the sense that they are between 0 and 1. However, they are continuous within that range, and if you wanted presence/absence, you would need a threshold. To get the optimal threshold, you would normally have a hold out data set, but here I used the training data for simplicity.

```r
eva <- evaluate(dw[dw$pa==1, ], dw[dw$pa==0, ], rrf)
eva
```

```
## class : ModelEvaluation
## n presences : 1224
## n absences : 2022
## AUC : 0.9993919
## cor : 0.9646471
## max TPR+TNR at : 0.4870895
```

We can make a ROC plot

```r
plot(eva, 'ROC')
```
Find a good threshold to determine presence/absence and plot the prediction.

```r
tr <- threshold(eva)
tr
## kappa spec_sens no_omission prevalence equal_sens_spec
## thresholds 0.4870895 0.4870895 0.393281 0.3814001 0.518784
## sensitivity
## thresholds 0.7154833
plot(rp > tr[, 'spec_sens'])
```
5.3.2 Classification

We can also use the classification Random Forest model to make a prediction.

```r
rc <- predict(wc, crf, ext=ew)
plot(rc)
```
You can also get probabilities for the classes

```r
rc2 <- predict(wc, crf, ext=ew, type='prob', index=2)
plot(rc2)
```
Chapter 5. Spatial distribution models

5.4 Extrapolation

Now, let’s see if our model is general enough to predict the distribution of the Eastern species.

```r
de <- na.omit(de)
eva2 <- evaluate(de[de$pa==1, ], de[de$pa==0, ], rrf)
eva2
## class : ModelEvaluation
## n presences : 1866
## n absences : 2978
## AUC : 0.4294745
## cor : -0.2609383
## max TPR+TNR at : 0.000208
plot(eva2, 'ROC')
```

Spatial Data Analysis with R
We can also look at it on a map.

eus <- extent(SpatialPoints(bf[, 1:2]))
eus
class : Extent
xmin : -156.75
xmax : -64.4627
ymin : 25.141
ymax : 69.5
rcusa <- predict(wc, rrf, ext=eus)
plot(rcusa)
points(bf[,1:2], cex=.25)
Question 3: Why would it be that the model does not extrapolate well?

An important question in the biogeography of the western species is why it does not occur in Mexico. Or if it does, where would that be?

Let’s see.

```r
mex <- getData('GADM', country='MEX', level=1)
pred <- predict(wc, rrf, ext=mex)
pred <- mask(pred, mex)
plot(pred)
```
Question 4: Where in Mexico are you most likely to encounter western bigfoot?

We can also estimate range shifts due to climate change.

```r
fut <- getData('CMIP5', res=10, var='bio', rcp=85, model='AC', year=70)
names(fut)  # Output not shown
## [1] "ac85bi701" "ac85bi702" "ac85bi703" "ac85bi704" "ac85bi705"
## [6] "ac85bi706" "ac85bi707" "ac85bi708" "ac85bi709" "ac85bi7010"
## [11] "ac85bi7011" "ac85bi7012" "ac85bi7013" "ac85bi7014" "ac85bi7015"
## [16] "ac85bi7016" "ac85bi7017" "ac85bi7018" "ac85bi7019"
names(wc)  # Output not shown
## [1] "bio1" "bio2" "bio3" "bio4" "bio5" "bio6" "bio7" "bio8"
## [9] "bio9" "bio10" "bio11" "bio12" "bio13" "bio14" "bio15" "bio16"
## [17] "bio17" "bio18" "bio19"
names(fut) <- names(wc)
futusa <- predict(fut, rrf, ext=eus, progress='window')  # Loading required namespace: tcltk
plot(futusa)
```

5.4. Extrapolation
Question 5: Make a map to show where conditions are improving for western bigfoot, and where they are not. Is the species headed toward extinction?

5.5 Further reading

More on Species distribution modeling with R; and on the use of boosted regression trees in the same context.
Chapter Six

Local Regression

Regression models are typically “global”. That is, all data are used simultaneously to fit a single model. In some cases it can make sense to fit more flexible “local” models. Such models exist in a general regression framework (e.g. generalized additive models), where “local” refers to the values of the predictor values. In a spatial context local refers to location. Rather than fitting a single regression model, it is possible to fit several models, one for each location (out of possibly very many) locations. This technique is sometimes called “geographically weighted regression” (GWR). GWR is a data exploration technique that allows to understand changes in importance of different variables over space (which may indicate that the model used is misspecified and can be improved).

There are two examples here. One short example with California precipitation data, and than a more elaborate example with house price data.

6.1 California precipitation

```r
if (!require("rspatial")) devtools::install_github('rspatial/rspatial')
## Loading required package: rspatial
## Loading required package: raster
## Loading required package: sp

library(rspatial)
counties <- sp_data('counties')
p <- sp_data('precipitation')
head(p)
##       ID   NAME        LAT      LONG      ALT      JAN     FEB     MAR     APR     MAY     JUN     JUL     AUG     SEP     OCT     NOV     DEC
## 1  ID741 DEATH VALLEY  36.47 -116.87 -59.0  7.40   9.50   7.50   3.40   1.70   1.00  3.70  2.80  4.30  2.20  4.70  3.90
## 2  ID743 THERMAL/FAA AIRPORT 33.63 -116.17 -34.0  9.20   6.90   7.90   1.80   1.60   0.40  1.90  3.40  5.30  2.00  6.30  5.50
## 3  ID744 BRAWLEY 2SW 32.96 -115.55 -31.0 11.30   8.30   7.60   2.00   0.80   0.10  1.90  9.20  6.50  5.00  4.80  9.70
## 4  ID753 IMPERIAL/FAA AIRPORT 32.83 -115.57 -18.0 10.60   7.00   6.10   2.50   0.20   0.00  2.40  2.60  8.30  5.40  7.70  7.30
## 5  ID754 NILAND 33.28 -115.51 -18.0  9.00   8.00   9.00   3.00   0.00   1.00  8.00  8.00  9.00  3.00  0.00  0.00  1.00
## 6  ID758 EL CENTRO/NAF 32.82 -115.67 -13.0  9.80  1.60  3.70  3.00  0.40  0.00  3.30 10.80  0.20  0.00  3.30  1.40

plot(counties)
points(p[,c('LONG', 'LAT')], col='red', pch=20)
```
Compute annual average precipitation

```r
p$pan <- rowSums(p[,6:17])
```

Global regression model

```r
m <- lm(pan ~ ALT, data=p)
m

## Call:
## lm(formula = pan ~ ALT, data = p)
## Coefficients:
## (Intercept) ALT
## 523.60 0.17
```

Create Spatial* objects with a planar crs.

```r
alb <- CRS("+proj=aea +lat_1=34 +lat_2=40.5 +lat_0=0 +lon_0=-120 +x_0=0 +y_0=-4000000 +ellps=GRS80 +datum=NAD83 +units=m +no_defs")
sp <- p
coordinates(sp) = ~ LONG + LAT
crs(sp) <- "+proj=longlat +datum=NAD83"
spt <- spTransform(sp, alb)
cst <- spTransform(counties, alb)
```
Get the optimal bandwidth

```r
library(spwr)
## Loading required package: spData
## NOTE: This package does not constitute approval of GWR
## as a method of spatial analysis; see example(gwr)
bw <- gwr.sel(pan ~ ALT, data=spt)
## Bandwidth: 526221.1 CV score: 64886883
## Bandwidth: 850593.6 CV score: 74209073
## Bandwidth: 325747.9 CV score: 54001118
## Bandwidth: 201848.6 CV score: 44611213
## Bandwidth: 125274.7 CV score: 35746320
## Bandwidth: 77949.39 CV score: 29181737
## Bandwidth: 48700.74 CV score: 22737197
## Bandwidth: 30624.09 CV score: 17457161
## Bandwidth: 19452.1 CV score: 15163436
## Bandwidth: 12547.43 CV score: 19452191
## Bandwidth: 22792.75 CV score: 15512988
## Bandwidth: 17052.67 CV score: 15709960
## Bandwidth: 20218.99 CV score: 15167438
## Bandwidth: 19767.99 CV score: 15156913
## Bandwidth: 19790.05 CV score: 15156906
## Bandwidth: 19781.39 CV score: 15156902
## Bandwidth: 19781.48 CV score: 15156902
## Bandwidth: 19781.47 CV score: 15156902
bw
## [1] 19781.47
```

Create a regular set of points to estimate parameters for.

```r
r <- raster(ctst, res=10000)
r <- rasterize(ctst, r)
ewpts <- rasterToPoints(r)
```

Run the `gwr` function

```r
g <- gwr(pan ~ ALT, data=spt, bandwidth=bw, fit.points=newpts[,1:2])
g
## Call:
gwr(formula = pan ~ ALT, data = spt, bandwidth = bw, fit.points = newpts[, 1:2])
## Kernel function: gwr.Gauss
## Fixed bandwidth: 19781.47
## Fit points: 4087
## Summary of GWR coefficient estimates at fit points:
##                Min.  1st Qu.   Median  3rd Qu.     Max.
## X.Intercept. -702.4012  79.5425  330.4881  735.4272  3468.870
## ALT          -3.9127  0.0306   0.2046   0.4154   4.6133
```

Link the results back to the raster

```r
slope <- r
intercept <- r
slope[!is.na(slope)] <- g$SDF$ALT
intercept[!is.na(intercept)] <- g$SDF$'(Intercept)'
```

(continues on next page)
6.2 California House Price Data


```
houses <- sp_data("houses1990.csv")
dim(houses)
## [1] 20640 9
head(houses)
## houseValue income houseAge rooms bedrooms population households latitude longitude
## 1 452600 8.3252 41 880 129 322 126 37.88 -122.23
## 2 358500 8.3014 21 7099 1106 2401 1138 37.86 -122.22
## 3 352100 7.2574 52 1467 190 496 177 37.85 -122.24
## 4 341300 5.6431 52 1274 235 558 219 37.85 -122.25
## 5 342200 3.8462 52 1627 280 565 259 37.85 -122.25
## 6 269700 4.0368 52 919 213 413 193 37.85 -122.25
```

Each record represents a census “blockgroup”. The longitude and latitude of the centroids of each block group are available. We can use that to make a map and we can also use these to link the data to other spatial data. For example to get county-membership of each block group. To do that, let’s first turn this into a SpatialPointsDataFrame to find
out to which county each point belongs.

```r
library(sp)
coordinates(houses) <- ~longitude+latitude

plot(houses, cex=0.5, pch=1, axes=TRUE)
```

Now get the county boundaries and assign CRS of the houses data matches that of the counties (because they are both in longitude/latitude!).

```r
library(raster)
crs(houses) <- crs(counties)

Do a spatial query (points in polygon)

```r
cnty <- over(houses, counties)
head(cnty)
```

<table>
<thead>
<tr>
<th>STATE</th>
<th>COUNTY</th>
<th>NAME</th>
<th>LSAD</th>
<th>LSAD_TRANS</th>
</tr>
</thead>
<tbody>
<tr>
<td>06</td>
<td>001</td>
<td>Alameda</td>
<td>06</td>
<td>County</td>
</tr>
</tbody>
</table>
```
6.3 Summarize

We can summarize the data by county. First combine the extracted county data with the original data.

```r
hd <- cbind(data.frame(houses), cnty)
```

Compute the population by county

```r
totpop <- tapply(hd$population, hd$NAME, sum)
totpop
```

<table>
<thead>
<tr>
<th>County</th>
<th>Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alameda</td>
<td>124177</td>
</tr>
<tr>
<td>Alpine</td>
<td>1113</td>
</tr>
<tr>
<td>Amador</td>
<td>30039</td>
</tr>
<tr>
<td>Butte</td>
<td>182120</td>
</tr>
<tr>
<td>Calaveras</td>
<td>16275</td>
</tr>
<tr>
<td>Colusa</td>
<td>799017</td>
</tr>
<tr>
<td>Contra Costa</td>
<td></td>
</tr>
<tr>
<td>Del Norte</td>
<td>16045</td>
</tr>
<tr>
<td>El Dorado</td>
<td>662261</td>
</tr>
<tr>
<td>Fresno</td>
<td>24798</td>
</tr>
<tr>
<td>Glenn</td>
<td>116418</td>
</tr>
<tr>
<td>Imperial</td>
<td>27214</td>
</tr>
<tr>
<td>Inyo</td>
<td>8721937</td>
</tr>
<tr>
<td>Kern</td>
<td>88089</td>
</tr>
<tr>
<td>Lake</td>
<td>528995</td>
</tr>
<tr>
<td>Lassen</td>
<td>91842</td>
</tr>
<tr>
<td>Los Angeles</td>
<td></td>
</tr>
<tr>
<td>Madera</td>
<td>8721937</td>
</tr>
<tr>
<td>Modoc</td>
<td>108633</td>
</tr>
<tr>
<td>Mono</td>
<td>27714</td>
</tr>
<tr>
<td>Monterey</td>
<td>8721937</td>
</tr>
<tr>
<td>Napa</td>
<td>88089</td>
</tr>
<tr>
<td>Nevada</td>
<td>512885</td>
</tr>
<tr>
<td>Orange</td>
<td>108030</td>
</tr>
<tr>
<td>Placer</td>
<td>108030</td>
</tr>
<tr>
<td>Plumas</td>
<td>108030</td>
</tr>
<tr>
<td>Trinity</td>
<td>170761</td>
</tr>
<tr>
<td>Tulare</td>
<td>19739</td>
</tr>
<tr>
<td>Tuolumne</td>
<td>19739</td>
</tr>
<tr>
<td>Ventura</td>
<td>19739</td>
</tr>
<tr>
<td>Yolo</td>
<td>19739</td>
</tr>
<tr>
<td>Yuba</td>
<td>19739</td>
</tr>
<tr>
<td>Yolo</td>
<td>19739</td>
</tr>
<tr>
<td>Yuba</td>
<td>19739</td>
</tr>
</tbody>
</table>

Income is harder because we have the median household income by blockgroup. But it can be approximated by first computing total income by blockgroup, summing that, and dividing that by the total number of households.

```r
# total income
hd$suminc <- hd$income * hd$households
# now use aggregate (similar to tapply)
csum <- aggregate(hd[, c('suminc', 'households')], list(hd$NAME), sum)
# divide total income by number of households
csum$income <- 10000 * csum$suminc / csum$households
# sort
csum <- csum[order(csum$income), ]
head(csum)
```

<table>
<thead>
<tr>
<th>County</th>
<th>Median Household Income</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trinity</td>
<td>11198.985</td>
</tr>
<tr>
<td>Tulare</td>
<td>19739</td>
</tr>
<tr>
<td>Trinity</td>
<td>19739</td>
</tr>
<tr>
<td>Trinity</td>
<td>19739</td>
</tr>
</tbody>
</table>

(continues on next page)
17 Lake 47612.899 20805 22885.32
11 Glenn 20497.683 8821 23237.37
tail(csum)
Group.1 suminc households income
56 Ventura 994094.8 210418 47243.81
7 Contra Costa 1441734.6 299123 48198.72
30 Orange 3938638.1 800968 49173.48
43 Santa Clara 2621895.6 518634 50553.87
41 San Mateo 1169145.6 230674 50683.89
21 Marin 436808.4 85869 50869.17

6.4 Regression

Before we make a regression model, let's first add some new variables that we might use, and then see if we can build a regression model with house price as dependent variable. The authors of the paper used a lot of log transforms, so you can also try that.

```r
hd$roomhead <- hd$rooms / hd$population
hd$bedroomhead <- hd$bedrooms / hd$population
hd$hhsize <- hd$population / hd$households
```

Ordinary least squares regression:

```r
# OLS
m <- glm( houseValue ~ income + houseAge + roomhead + bedroomhead + population, ,
          data=hd)
summary(m)
```

Coefficients:

| Estimate | Std. Error | t value | Pr(>|t|) |
|-----------|------------|---------|----------|
| (Intercept) | -6.508e+04 | 2.533e+03 | -25.686 | < 2e-16 *** |
| income | 5.179e+04 | 3.833e+02 | 135.092 | < 2e-16 *** |
| houseAge | 1.832e+03 | 4.575e+01 | 40.039 | < 2e-16 *** |
| roomhead | -4.720e+04 | 1.489e+03 | -31.688 | < 2e-16 *** |
| bedroomhead | 2.648e+05 | 6.820e+03 | 38.823 | < 2e-16 *** |
| population | 3.947e+00 | 5.081e-01 | 7.769 | 8.27e-15 *** |

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 6022427437)

Null deviance: 2.7483e+14 on 20639 degrees of freedom
Residual deviance: 1.2427e+14 on 20634 degrees of freedom
AIC: 523369

Number of Fisher Scoring iterations: 2
```
6.5 Geographically Weighted Regression

6.5.1 By county

Of course we could make the model more complex, with e.g. squared income, and interactions. But let’s see if we can do Geographically Weighted regression. One approach could be to use counties.

First I remove records that were outside the county boundaries

```r
hd2 <- hd[!is.na(hd$NAME),]
```

Then I write a function to get what I want from the regression (the coefficients in this case)

```r
regfun <- function(x) {
 dat <- hd2[hd2$NAME == x,]
 m <- glm(houseValue~income+houseAge+roomhead+bedroomhead+population, data=dat)
 coefficients(m)
}
```

And now run this for all counties using `sapply`:

```r
countynames <- unique(hd2$NAME)
res <- sapply(countynames, regfun)
```

Plot of a single coefficient

```r
dotchart(sort(res['income',], cex=0.65)
```
6.5. Geographically Weighted Regression
There clearly is variation in the coefficient ($\beta$) for income. How does this look on a map?

First make a data.frame of the results

```r
resdf <- data.frame(NAME=colnames(res), t(res))
head(resdf)
```

```
NAME X.Intercept. income houseAge roomhead
Alameda Alameda -62373.62 35842.330 591.1001 24147.3182
Contra Costa Contra Costa -61759.84 43668.442 465.8897 -356.6085
Alpine Alpine -77605.93 40850.588 5595.4113 NA
Amador Amador 120480.71 3234.519 -771.5857 37997.0069
Butte Butte 50935.36 15577.745 -380.5824 9078.9315
Calaveras Calaveras 91364.72 7126.668 -929.4065 16843.3456
```

Fix the counties object. There are too many counties because of the presence of islands. I first aggregate (‘dissolve’ in GIS-speak’) the counties such that a single county becomes a single (multi-)polygon.

```r
dim(counties)
[1] 68 5
dcounties <- aggregate(counties, vars='NAME')
Warning in .local(x, ...): Use argument "by" instead of deprecated argument "vars"
Loading required namespace: rgeos
dim(dcounties)
[1] 58 1
```

Now we can merge this SpatialPolygonsDataFrame with data.frame with the regression results.

```r
cnres <- merge(dcounties, resdf, by='NAME')
spplot(cnres, 'income')
```
To show all parameters in a ‘conditioning plot’, we need to first scale the values to get similar ranges.

```r
a copy of the data
cnres2 <- cnres

scale all variables, except the first one (county name)
assigning values to a "@data" slot is risky, but (I think) OK here
cnres2@data = data.frame(scale(data.frame(cnres)[, -1]))
spplot(cnres2)
```
Is this just random noise, or is there spatial autocorrelation?

```r
library(spdep)
Loading required package: Matrix
nb <- poly2nb(cnres)
plot(cnres)
plot(nb, coordinates(cnres), add=T, col='red')
```
lw <- nb2listw(nb)
moran.test(cnres$income, lw)
##
## Moran I test under randomisation
##
## data: cnres$income
## weights: lw
##
## Moran I statistic standard deviate = 2.2473, p-value = 0.01231
## alternative hypothesis: greater
## sample estimates:
## Moran I statistic   Expectation    Variance
##   0.173419996    -0.017543860  0.007220867
moran.test(cnres$roomhead, lw, na.action=na.omit)
##
## Moran I test under randomisation
##
## data: cnres$roomhead
## weights: lw
## omitted: 2
##
## Moran I statistic standard deviate = 1.3929, p-value = 0.08183
## alternative hypothesis: greater
## sample estimates:

6.5. Geographically Weighted Regression
Spatial Data Analysis with R

## Moran I statistic Expectation Variance

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.102596252</td>
<td>-0.017857143</td>
<td>0.007478348</td>
</tr>
</tbody>
</table>

### 6.5.2 By grid cell

An alternative approach would be to compute a model for grid cells. Let’s use the ‘Teale Albers’ projection (often used when mapping the entire state of California).

```r
TA <- CRS("+proj=aea +lat_1=34 +lat_2=40.5 +lat_0=0 +lon_0=-120 +x_0=0 +y_0=-4000000 +datum=NAD83 +units=m +no_defs +ellps=GRS80 +towgs84=0,0,0")
countiesTA <- spTransform(counties, TA)
```

Create a RasteLayer using the extent of the counties, and setting an arbitrary resolution of 50 by 50 km cells

```r
library(raster)
r <- raster(countiesTA)
res(r) <- 50000
```

Get the xy coordinates for each raster cell:

```r
xy <- xyFromCell(r, 1:ncell(r))
```

For each cell, we need to select a number of observations, let’s say within 50 km of the center of each cell (thus the data that are used in different cells overlap). And let’s require at least 50 observations to do a regression.

First transform the houses data to Teale-Albers

```r
housesTA <- spTransform(houses, TA)
crds <- coordinates(housesTA)
```

Set up a new regression function.

```r
regfun2 <- function(d) {
m <- glm(houseValue~income+houseAge+roomhead+bedroomhead+population, data=d)
coefficients(m)
}
```

Run the model for all cells if there are at least 50 observations within a radius of 50 km.

```r
res <- list()
for (i in 1:nrow(xy)) {
d <- sqrt((xy[i,1]-crds[,1])^2 + (xy[i,2]-crds[,2])^2)
j <- which(d < 50000)
if (length(j) > 49) {
d <- hd[j]
res[[i]] <- regfun2(d)
} else {
res[[i]] <- NA
}
}
```

For each cell get the income coefficient:

```r
inc <- sapply(res, function(x) x["income"])
```

Use these values in a RasterLayer
rinc <- setValues(r, inc)
plot(rinc)
plot(countiesTA, add=T)

Moran(rinc)
## [1] 0.3271564

So that was a lot of ‘home-brew-GWR’.

**Question 1:** Can you comment on weaknesses (and perhaps strengths) of the approaches I have shown?

### 6.6 spgwr package

Now use the spgwr package (and the gwr function) to fit the model. You can do this with all data, as long as you supply and argument `fit.points` (to avoid estimating a model for each observation point. You can use a raster similar to the one I used above (perhaps disaggregate with a factor 2 first).

This is how you can get the points to use:

Create a RasterLayer with the correct extent

```r
r <- raster(countiesTA)
```

Set to a desired resolution. I choose 25 km

```r
6.6. spgwr package

87
```
I only want cells inside of CA, so I add some more steps.

```r
ca <- rasterize(countiesTA, r)
```

Extract the coordinates that are not NA.

```r
fitpoints <- rasterToPoints(ca)
```

I don’t want the third column

```r
fitpoints <- fitpoints[, -3]
```

Now specify the model

```r
gwr.model <- ______
```

gwr returns a list-like object that includes (as first element) a SpatialPointsDataFrame that has the model coefficients. Plot these using `spplot`, and after that, transfer them to a RasterBrick object.

To extract the SpatialPointsDataFrame:

```r
sp <- gwr.model$SDF
spplot(sp)
```

To reconnect these values to the raster structure (etc.)

```r
cells <- cellFromXY(r, fitpoints)
dd <- as.matrix(data.frame(sp))
b <- brick(r, values=FALSE, nl=ncol(dd))
b[cells] <- dd
names(b) <- colnames(dd)
plot(b)
```

**Question 2**: Briefly comment on the results and the differences (if any) with the two home-brew examples.
CHAPTER
SEVEN

SPATIAL REGRESSION MODELS

7.1 Introduction

This chapter deals with the problem of inference in (regression) models with spatial data. Inference from regression models with spatial data can be suspect. In essence this is because nearby things are similar, and it may not be fair to consider individual cases as independent (they may be pseudo-replicates). Therefore, such models need to be diagnosed before reporting them. Specifically, it is important to evaluate the for spatial autocorrelation in the residuals (as these are supposed to be independent, not correlated). If the residuals are spatially autocorrelated, this indicates that the model is misspecified. In that case you should try to improve the model by adding (and perhaps removing) important variables. If that is not possible (either because there is no data available, or because you have no clue as to what variable to look for), you can try formulating a regression model that controls for spatial autocorrelation. We show some examples of that approach here.

7.2 Reading & aggregating data

We use California house price data from the 2000 Census.

7.2.1 Get the data

```r
if (!require("rspatial")) devtools::install_github('rspatial/rspatial')
Loading required package: rspatial
library(rspatial)

h <- sp_data('houses2000')
```

I have selected some variables on housing and population. You can get more data from the American Fact Finder http://factfinder2.census.gov (among other web sites).

```r
library(raster)
dim(h)
[1] 7049 29
names(h)
[1] "TRACT" "GEOID" "label" "houseValue" "nhousingUn"
[6] "recHouses" "nMobileHom" "yearBuilt" "nBadPlumbi" "nBadKitche"
[11] "nRooms" "nBedrooms" "medHHinc" "Population" "Males"
[16] "Females" "Under5" "MedianAge" "White" "Black"
[21] "AmericanIn" "Asian" "Hispanic" "PopInHouse" "nHousehold"
[26] "Families" "householdS" "familySize" "County"
```

These are the variables we have:

variable
explanation

nhousingUn
number of housing units

recHouses
number of houses for recreational use

nMobileHom
number of mobile homes

nBadPlumbi
number of houses with incomplete plumbing

nBadKitche
number of houses with incomplete kitchens

Population
total population

Males
number of males

Females
number of females

Under5
number of persons under five

White
number of persons identifying themselves as white (only)

Black
number of persons identifying themselves African-american (only)

AmericanIn
number of persons identifying themselves American Indian (only)

Asian
number of persons identifying themselves as American Indian (only)

Hispanic
number of persons identifying themselves as hispanic (only)

PopInHouse
number of persons living in households

nHousehold
number of households

Families
number of families

houseValue
value of the house
yearBuilt
year house was built
nRooms
median number of rooms per house
nBedrooms
median number of bedrooms per house
medHHinc
median household income
MedianAge
median age of population
householdS
median household size
familySize
median family size

First some data massaging. These are values for Census tracts. I want to analyze these data at the county level. So we need to aggregate the values.

```
hh <- aggregate(h, "County")
```

Now we have the county outlines, but we also need to get the values of interest at the county level. Although it is possible to do everything in one step in the `aggregate` function, I prefer to do this step by step. The simplest case is where we can sum the numbers. For example for the number of houses.

```
d1a <- aggregate(d1, list(County=h$County), sum, na.rm=TRUE)
```

In other cases we need to use a weighted mean. For example for houseValue

```
d2 <- data.frame(h)[, c("houseValue", "yearBuilt", "nRooms", "nBedrooms", "medHHinc", "MedianAge", "householdS", "familySize")]
d2 <- cbind(d2 * h$nHousehold, hh=h$nHousehold)
d2a <- aggregate(d2, list(County=h$County), sum, na.rm=TRUE)
d2a[, 2:ncol(d2a)] <- d2a[, 2:ncol(d2a)] / d2a$hh
```

Combine these two groups:

```
d12 <- merge(d1a, d2a, by='County')
```

And merge the aggregated (from census tract to county level) attribute data with the aggregated polygons

```
hh <- merge(hh, d12, by='County')
```

Let’s make some maps, at the original Census tract level. We are using a bit more advanced (and slower) plotting methods here. First the house value, using a legend with 10 intervals.

7.2. Reading & aggregating data
library(latticeExtra)
## Loading required package: lattice
## Loading required package: RColorBrewer

grps <- 10
brks <- quantile(h$houseValue, 0:(grps-1)/(grps-1), na.rm=TRUE)

p <- spplot(h, "houseValue", at=brks, col.regions=rev(brewer.pal(grps, "RdBu")), col="transparent")
p + layer(sp.polygons(hh))

This takes very long. spplot (levelplot) is a bit slow when using a large dataset...

A map of the median household income.

brks <- quantile(h$medHHinc, 0:(grps-1)/(grps-1), na.rm=TRUE)

p <- spplot(h, "medHHinc", at=brks, col.regions=rev(brewer.pal(grps, "RdBu")), col="transparent")
p + layer(sp.polygons(hh))
I'll now make some models with the county-level data. I first compute some new variables (that I might not all use).

```r
hh$fBadP <- pmax(hh$nBadPlumbi, hh$nBadKitche) / hh$housingUn
hh$fWhite <- hh$White / hh$Population
hh$age <- 2000 - hh$yearBuilt

f1 <- houseValue ~ age + nBedrooms
ml <- lm(f1, data=hh)
summary(ml)
```

7.3 Basic OLS model
## nBedrooms 191889 76756 2.500 0.01543 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 94740 on 55 degrees of freedom
## Multiple R-squared: 0.3235, Adjusted R-squared: 0.2989
## F-statistic: 13.15 on 2 and 55 DF, p-value: 2.147e-05

Just for illustration, here is how you can do OLS with matrix algebra. First set up the data. I add a constant variable ‘1’ to X, to get an intercept.

```r
y <- matrix(hh$houseValue)
X <- cbind(1, hhage, hhnBedrooms)
```

Then use matrix algebra

```r
ols <- solve(t(X) %*% X) %*% t(X) %*% y
rownames(ols) <- c('intercept', 'age', 'nBedroom')
ols
[,1]
intercept -628577.95
age 12694.75
nBedroom 191888.89
```

So, according to this simple model, “age” is highly significant. The older a house, the more expensive. You pay 1,269,475 dollars more for a house that is 100 years old than a for new house! While the p-value for the number of bedrooms is not impressive, but every bedroom adds about 200,000 dollars to the value of a house.

**Question 1:** What would be the price be of a house built in 1999 with three bedrooms?

Let’s see if the errors (model residuals) appear to be randomly distributed in space.

```r
hh$residuals <- residuals(m1)
brks <- quantile(hh$residuals, 0:(grps-1)/(grps-1), na.rm=TRUE)
spplot(hh, "residuals", at=brks, col.regions=rev(brewer.pal(grps, "RdBu")), col="black ...")
```
What do think? Is this random? Let’s see what Mr. Moran would say. First make a neighborhoods list. I add two links: between San Francisco and Marin County and vice versa (to consider the Golden Gate bridge).

```r
library(spdep)

nb <- poly2nb(hh)
nb[[21]] <- sort(as.integer(c(nb[[21]], 38)))
nb[[38]] <- sort(as.integer(c(21, nb[[38]])))

nb
```

```r
Neighbour list object:
Number of regions: 58
Number of nonzero links: 278
Percentage nonzero weights: 8.263971
Average number of links: 4.793103

par(mai=c(0,0,0,0))
plot(hh)
plot(nb, coordinates(hh), col='red', lwd=2, add=TRUE)
```

7.3. Basic OLS model
We can use the neighbour list object to get the average value for the neighbors of each polygon.

```r
cor(hh$residuals, resnb)
[1] 0.6311218
```

```r
ggplot(hh, aes(x=x, y=y, group=full.ID, fill=color)) + geom_polygon() + geom_point() + coord_equal() + scale_fill_manual(values=rainbow(n=6))
```

```r
resnb <- sapply(nb, function(x) mean(hh$residuals[x]))
cor(hh$residuals, resnb)
[1] 0.6311218
plot(hh$residuals, resnb, xlab='Residuals', ylab='Mean adjacent residuals')
```
lw <- nb2listw(nb)

That does not look independent.

moran.mc(hh$residuals, lw, 999)
##
## Monte-Carlo simulation of Moran I
##
## data: hh$residuals
## weights: lw
## number of simulations + 1: 1000
##
## statistic = 0.41428, observed rank = 1000, p-value = 0.001
## alternative hypothesis: greater

Clearly, there is spatial autocorrelation. Our $p$-values and regression model coefficients cannot be trusted. so let’s try SAR models.

### 7.4 Spatial lag model

Here I show a how to do spatial regression with a spatial lag model (lagsarlm)
Spatial Data Analysis with R

```r
mls = lagsarlm(f1, data=hh, lw, tol.solve=1.0e-30)

summary(mls)
```

```
Call: lagsarlm(formula = f1, data = hh, listw = lw, tol.solve = 1e-30)
Residuals:
Min 1Q Median 3Q Max
-108145.2 -49816.3 -1316.3 44604.9 171536.0
Type: lag
Coefficients: (asymptotic standard errors)
Estimate Std. Error z value Pr(>|z|)
(Intercept) -418674.1 153693.6 -2.724 0.006448
age 5533.6 1698.2 3.258 0.001120
nBedrooms 127912.8 50859.7 2.515 0.011903
Rho: 0.77413, LR test value: 34.761, p-value: 3.7282e-09
Asymptotic standard error: 0.08125
z-value: 9.5277, p-value: < 2.22e-16
Wald statistic: 90.778, p-value: < 2.22e-16
Log likelihood: -727.9964 for lag model
ML residual variance (sigma squared): 3871700000, (sigma: 62223)
Number of observations: 58
Number of parameters estimated: 5
AIC: 1466, (AIC for lm: 1498.8)
LM test for residual autocorrelation
test value: 0.12431, p-value: 0.72441

hh$residuals <- residuals(mls)
moran.mc(hh$residuals, lw, 999)
```

```
Monte-Carlo simulation of Moran I
data: hh$residuals
weights: lw
number of simulations + 1: 1000
statistic = -0.016, observed rank = 522, p-value = 0.478
alternative hypothesis: greater

brks <- quantile(hh$residuals, 0:(grps-1)/(grps-1), na.rm=TRUE)
p <- spplot(hh, "residuals", at=brks, col.regions=rev(brewer.pal(grps, "RdBu")), col="#transparent")
print(p + layer(sp.polygons(hh)))
```

Chapter 7. Spatial regression models
7.5 Spatial error model

And now with a “Spatial error” (or spatial moving average) models (errorsarlm)

```r
mle = errorsarlm(f1, data=hh, lw, tol.solve=1.0e-30)
summary(mle)
```

## Call: errorsarlm(formula = f1, data = hh, listw = lw, tol.solve = 1e-30)
## Residuals:
##    Min  1Q Median  3Q Max
## -100640.7 -47783.1 -2364.5 44180.6 181876.5
## Type: error
## Coefficients: (asymptotic standard errors)
##                    Estimate Std. Error z value Pr(>|z|)
## (Intercept)       -185443.8   180133.7  -1.0295  0.30325
## age                4313.6      2214.9   1.9475  0.05147
## nBedrooms         117864.4     51564.7   2.2858  0.02227
## Lambda: 0.82151, LR test value: 29.781, p-value: 4.8373e-08
## Asymptotic standard error: 0.071111
## z-value: 11.552, p-value: < 2.22e-16

(continues on next page)
## Wald statistic: 133.46, p-value: < 2.22e-16
## Log likelihood: -730.4863 for error model
## ML residual variance (sigma squared): 4.07e+09, (sigma: 63797)
## Number of observations: 58
## Number of parameters estimated: 5
## AIC: 1471, (AIC for lm: 1498.8)

hh$residuals <- residuals(m1e)
moran.mc(hh$residuals, lw, 999)

## Monte-Carlo simulation of Moran I
## data: hh$residuals
## weights: lw
## number of simulations + 1: 1000
## statistic = 0.039033, observed rank = 749, p-value = 0.251
## alternative hypothesis: greater

brks <- quantile(hh$residuals, 0:(grps-1)/(grps-1), na.rm=TRUE)
p <- spplot(hh, "residuals", at=brks, col.regions=rev(brewer.pal(grps, "RdBu")),
            col="transparent")
print( p + layer(sp.polygons(hh)) )
Are the residuals spatially autocorrelated for either of these models? Let’s plot them for the spatial error model.

```r
brks <- quantile(hh$residuals, 0:(grps-1)/(grps-1), na.rm=TRUE)

p <- spplot(hh, "residuals", at=brks, col.regions=rev(brewer.pal(grps, "RdBu")), col="transparent")
print(p + layer(sp.polygons(hh)))
```
7.6 Questions

**Question 2:** The last two maps still seem to show a lot of spatial autocorrelation. But according to the tests there is none. Now why might that be?

**Question 3:** One of the most important, or perhaps THE most important aspect of modeling is variable selection. A misspecified model is never going to be any good, no matter how much you do to, e.g., correct for spatial autocorrelation. a) Which variables would you choose from the list?

  b) Which new variables could you propose to create from the variables in the list.

c) Which other variables could you add, created from the geometries/location (perhaps other geographic data).

d) add a lot of variables and use stepAIC to select an ‘optimal’ OLS model

e) check for spatial autocorrelation in the residuals of that model
8.1 Introduction

We are using a dataset of crimes in a city. Start by reading in the data.

```r
if (!require("rspatial")) devtools::install_github('rspatial/rspatial')
library(rspatial)
city <- sp_data('city')
crime <- sp_data('crime')
```

Here is a map of both datasets.

```r
plot(city, col='light blue')
points(crime, col='red', cex=.5, pch='+')
```

A sorted table of the incidence of crime types.

```r
tb <- sort(table(crime$CATEGORY))[-1]
tb
Arson Weapons Robbery
9 15 49
```
### Auto Theft Drugs or Narcotics Commercial Burglary
### 86 134 143
### Grand Theft Assaults DUI
### 143 172 212
### Residential Burglary Vehicle Burglary Drunk in Public
### 219 221 232
### Vandalism Petty Theft
### 355 665

Let's get the coordinates of the crime data, and for this exercise, remove duplicate crime locations. These are the 'events' we will use below (later we'll go back to the full data set).

```r
xy <- coordinates(crime)
dim(xy)
[1] 2661 2
xy <- unique(xy)
dim(xy)
[1] 1208 2
head(xy)
coords.x1 coords.x2
[1,] 6628868 1963718
[2,] 6632796 1964362
[3,] 6636855 1964873
[4,] 6626493 1964343
[5,] 6639506 1966094
[6,] 6640478 1961983
```

#### 8.2 Basic statistics

Compute the mean center and standard distance for the crime data.

```r
mean center
mc <- apply(xy, 2, mean)
standard distance
sd <- sqrt(sum((xy[,1] - mc[1])^2 + (xy[,2] - mc[2])^2) / nrow(xy))
```

Plot the data to see what we’ve got. I add a summary circle (as in Fig 5.2) by dividing the circle in 360 points and compute bearing in radians. I do not think this is particularly helpful, but it might be in other cases. And it is always fun to figure out how to do tis.

```r
plot(city, col='light blue')
points(crime, cex=.5)
points(cbind(mc[1], mc[2]), pch='*', col='red', cex=5)

make a circle
bearing <- 1:360 * pi/180
cx <- mc[1] + sd * cos(bearing)
cy <- mc[2] + sd * sin(bearing)
circle <- cbind(cx, cy)
lines(circle, col='red', lwd=2)
```
8.3 Density

Here is a basic approach to computing point density.

```r
CityArea <- raster::area(city)
dens <- nrow(xy) / CityArea
```

**Question 1a:** What is the unit of ‘dens’?

**Question 1b:** What is the number of crimes per square km?

To compute quadrat counts I first create quadrats (a RasterLayer). I get the extent for the raster from the city polygon, and then assign an arbitrary resolution of 1000. (In real life one should always try a range of resolutions, I think).

```r
r <- raster(city)
res(r) <- 1000
r
```

To find the cells that are in the city, and for easy display, I create polygons from the RasterLayer.

```r
r <- rasterize(city, r)
plot(r)
quads <- as(r, 'SpatialPolygons')
plot(quads, add=TRUE)
points(crime, col='red', cex=.5)
```
The number of events in each quadrat can be counted using the ‘rasterize’ function. That function can be used to summarize the number of points within each cell, but also to compute statistics based on the ‘marks’ (attributes). For example we could compute the number of different crime types by changing the ‘fun’ argument to another function (see ?rasterize).

```r
nc <- rasterize(coordinates(crime), r, fun='count', background=0)
plot(nc)
plot(city, add=TRUE)
```

`nc` has crime counts. As we only have data for the city, the areas outside of the city need to be excluded. We can do that with the mask function (see ?mask).

```r
ncrimes <- mask(nc, r)
plot(ncrimes)
```
Better. Now the frequencies.

```r
f <- freq(ncrimes, useNA='no')
head(f)
value count
1 0 48
2 1 29
3 2 24
4 3 22
5 4 19
6 5 16
plot(f, pch=20)
```

8.3. Density
Does this look like a pattern you would have expected? Now compute average number of cases per quadrat.

```r
number of quadrats
quadrats <- sum(f[,2])
number of cases
cases <- sum(f[,1] * f[,2])
mu <- cases / quadrats
mu
[1] 9.261484
```

And create a table like Table 5.1 on page 130

```r
ff <- data.frame(f)
colnames(ff) <- c('K', 'X')
ff$Kmu <- ff$K - mu
ff$Kmu2 <- ff$Kmu^2
ff$XKmu2 <- ff$Kmu2 * ff$X
head(ff)
K X Kmu Kmu2 XKmu2
1 0 48 -9.261484 85.77509 4117.2042
2 1 29 -8.261484 68.25212 1979.3115
3 2 24 -7.261484 52.72915 1265.4996
4 3 22 -6.261484 39.20618 862.5360
5 4 19 -5.261484 27.68321 525.9811
6 5 16 -4.261484 18.16025 290.5639
```
The observed variance $s^2$ is

\[
\begin{align*}
s^2 &\leftarrow \frac{\text{sum}(ff$X$Kmu2)}{\text{sum}(ff$X$)-1} \\
\text{s2} &\end{align*}
\]

And the VMR is

\[
\begin{align*}
\text{VMR} &\leftarrow s^2 / \mu \\
\text{VMR} &\end{align*}
\]

**Question 2:** What does this VMR score tell us about the point pattern?

### 8.4 Distance based measures

As we are using a planar coordinate system we can use the `dist` function to compute the distances between pairs of points. If we were using longitude/latitude we could compute distance via spherical trigonometry functions. These are available in the `sp`, `raster`, and notably the `geosphere` package (among others). For example, see `raster::pointDistance`.

\[
\begin{align*}
d &\leftarrow \text{dist}(xy) \\
\text{class}(d) &\end{align*}
\]

I want to coerce the `dist` object to a matrix, and ignore distances from each point to itself (the zeros on the diagonal).

\[
\begin{align*}
\text{dm} &\leftarrow \text{as.matrix}(d) \\
\text{dm}[1:5, 1:5] &\end{align*}
\]

To get, for each point, the minimum distance to another event, we can use the `apply` function. Think of the rows as each point, and the columns of all other points (vice versa could also work).

\[
\begin{align*}
\text{dmin} &\leftarrow \text{apply}(\text{dm}, 1, \text{min}, \text{na.rm} = \text{TRUE}) \\
\text{head(dmin)} &\end{align*}
\]

Now it is trivial to get the mean nearest neighbour distance according to formula 5.5, page 131.

\[
\begin{align*}
\text{mdmin} &\leftarrow \text{mean}(\text{dmin})
\end{align*}
\]
Do you want to know, for each point, Which point is its nearest neighbour? Use the ‘which.min’ function (but note that this ignores the possibility of multiple points at the same minimum distance).

```r
wdmin <- apply(dm, 1, which.min)
```

And what are the most isolated cases? That is the furthest away from their nearest neighbor. I plot the top 25. A bit complicated.

```r
plot(city)
points(crime, cex=.1)
ord <- rev(order(dmin))

far25 <- ord[1:25]
neighbors <- wdmin[far25]

points(xy[far25,], col='blue', pch=20)
points(xy[neighbors,], col='red')

drawing the lines, easiest via a loop
for (i in far25) {
 lines(rbind(xy[i,], xy[wdmin[i],]), col='red')
}
```

Note that some points, but actually not that many, are used as isolated and as a neighbor to an isolated points.

Now on to the G function

```r
max(dmin)
[1] 1829.738
get the unique distances (for the x-axis)
distance <- sort(unique(round(dmin)))
compute how many cases there with distances smaller that each x
Gd <- sapply(distance, function(x) sum(dmin < x))
```
# normalize to get values between 0 and 1
Gd <- Gd / \texttt{length}(dmin)
plot(distance, Gd)

# using xlim to exclude the extremes
plot(distance, Gd, \texttt{xlim} = \texttt{c}(0, 500))
Here is a function to show these values in a more standard way.

```r
stepplot <- function(x, y, type='l', add=FALSE, ...) {
 x <- as.vector(t(cbind(x, c(x[-1], x[length(x)]))))
 y <- as.vector(t(cbind(y, y)))
 if (add) {
 lines(x,y, ...)
 } else {
 plot(x,y, type=type, ...)
 }
}
```

And use it for our G function data.

```r
stepplot(distance, Gd, type='l', lwd=2, xlim=c(0,500))
```
The steps are so small in our data, that you hardly see the difference.

I use the centers of previously defined raster cells to compute the $F$ function.

```r
get the centers of the 'quadrats' (raster cells)
p <- rasterToPoints(r)
compute distance from all crime sites to these cell centers
d2 <- pointDistance(p[,1:2], xy, longlat=FALSE)

the remainder is similar to the G function
Fdistance <- sort(unique(round(d2)))
mind <- apply(d2, 1, min)
Fd <- sapply(Fdistance, function(x) sum(mind < x))
Fd <- Fd / length(mind)
plot(Fdistance, Fd, type='l', lwd=2, xlim=c(0, 3000))
```

8.4. Distance based measures
Compute the expected distribution (5.12 on page 145)

```r
ef <- function(d, lambda) {
 E <- 1 - exp(-1 * lambda * pi * d^2)
}
expected <- ef(0:2000, dens)
```

Now, let’s combine F and G on one plot.

```r
plot(distance, Gd, type='l', lwd=2, col='red', las=1,
 ylab='F(d) or G(d)', xlab='Distance', yaxs="i", xaxs="i")
lines(Fdistance, Fd, lwd=2, col='blue')
lines(0:2000, expected, lwd=2)
legend(1200, .3,
 c(expression(italic("G")["d"]), expression(italic("F")["d"]), 'expected'),
 lty=1, col=c('red', 'blue', 'black'), lwd=2, bty="n")
```
Question 3: *What does this plot suggest about the point pattern?*

Finally, let’s compute K. Note that I use the original distance matrix ‘d’ here.

```r
distance <- seq(1, 30000, 100)
Kd <- sapply(distance, function(x) sum(d < x)) # takes a while
Kd <- Kd / (length(Kd) * dens)
plot(distance, Kd, type='l', lwd=2)
```
Question 4: Create a single random pattern of events for the city, with the same number of events as the crime data (object xy). Use function ‘spsample’

Question 5: Compute the G function, and plot it on a single plot, together with the G function for the observed crime data, and the theoretical expectation (formula 5.12).

Question 6: (Difficult!) Do a Monte Carlo simulation (page 149) to see if the ‘mean nearest distance’ of the observed crime data is significantly different from a random pattern. Use a ‘for loop’. First write ‘pseudo-code’. That is, say in natural language what should happen. Then try to write R code that implements this.

8.5 Spatstat package

Above we did some ‘home-brew’ point pattern analysis, we will now use the spatstat package. In research you would normally use spatstat rather than your own functions, at least for standard analysis. I showed how you make some of these functions in the previous sections, because understanding how to go about that may allow you to take things in directions that others have not gone. The good thing about spatstat is that it very well documented (see http://spatstat.github.io/). The bad thing is that it uses an entirely different sets of classes (ways to represent spatial data) that we we will use in all other labs (classes from sp and raster); but it is not hard to get used to that.

```r
library(spatstat)
```

We start with making make a Kernel Density raster. I first create a ‘ppp’ (point pattern) object, as defined in the spatstat package.
A `ppp` object has the coordinates of the points and the analysis ‘window’ (study region). To assign the points locations we need to extract the coordinates from our `SpatialPoints` object. To set the window, we first need to coerce our `SpatialPolygons` into an ‘owin’ object. We need a function from the `maptools` package for this coercion.

Coerce from `SpatialPolygons` to an object of class “owin” (observation window):

```r
library(maptools)
cityOwin <- as.owin(city)
class(cityOwin)
[1] "owin"
cityOwin
window: polygonal boundary
enclosing rectangle: [6620591, 6654380] x [1956729.8, 1971518.9] units
```

Extract coordinates from `SpatialPointsDataFrame`:

```r
pts <- coordinates(crime)
head(pts)
coords.x1 coords.x2
[1,] 6628868 1963718
[2,] 6632796 1964362
[3,] 6636855 1964873
[4,] 6626493 1964343
[5,] 6639506 1966094
[6,] 6640478 1961983
```

Now we can create a ‘ppp’ (point pattern) object:

```r
p <- ppp(pts[,1], pts[,2], window=cityOwin)
Warning: 20 points were rejected as lying outside the specified window
Warning: data contain duplicated points
class(p)
[1] "ppp"
p
Planar point pattern: 2641 points
window: polygonal boundary
enclosing rectangle: [6620591, 6654380] x [1956729.8, 1971518.9] units
*** 20 illegal points stored in attr("rejects") ***
plot(p)
Warning in plot.ppp(p): 20 illegal points also plotted
```
Note the warning message about ‘illegal’ points. Do you see them and do you understand why they are illegal?

Having all the data well organized, it is now easy to compute Kernel Density

```r
ds <- density(p)
class(ds)
[1] "im"
plot(ds, main='crime density')
```
Density is the number of points per unit area. Let’s check if the numbers make sense, by adding them up and multiplying with the area of the raster cells. I use raster package functions for that.

```
nrow(pts)
[1] 2661
r <- raster(ds)
s <- sum(values(r), na.rm=TRUE)
s * prod(res(r))
[1] 2640.556
```

Looks about right. We can also get the information directly from the “im” (image) object

```
str(ds)
List of 10
##$ v : num [1:128, 1:128] NA ...
##$ dim : int [1:2] 128 128
##$ xrange: num [1:2] 6620591 6654380
##$ yrange: num [1:2] 1956730 1971519
##$ xstep : num 264
##$ ystep : num 116
##$ xcol : num [1:128] 6620723 6620987 6621251 6621515 6621779 ...
##$ yrow : num [1:128] 1956788 1956903 1957019 1957134 1957250 ...
##$ type : chr "real"
##$ units :List of 3
```

(continues on next page)
Here’s another, lengthy, example of generalization. We can interpolate population density from (2000) census data; assigning the values to the centroid of a polygon (as explained in the book, but not a great technique). We use a shapefile with census data.

census <- sp_data("census2000.rds")

To compute population density for each census block, we first need to get the area of each polygon. I transform density from persons per feet\(^2\) to persons per mile\(^2\), and then compute population density from POP2000 and the area

census$area <- area(census)
census$dens <- census$POP2000 / census$area

Now to get the centroids of the census blocks we can use the ‘coordinates’ function again. Note that it actually does something quite different (with a SpatialPolygons* object) then in the case above (with a SpatialPoints* object).

p <- coordinates(census)
head(p)
#   [,1]  [,2]
# 0 6666671 1991720
# 1 6655379 1986903
# 2 6604777 1982474
# 3 6612242 1981881
# 4 6613488 1986776
# 5 6616743 1986446

To create the ‘window’ we dissolve all polygons into a single polygon.

win <- aggregate(census)

Let’s look at what we have:

plot(census)
points(p, col='red', pch=20, cex=.25)
plot(win, add=TRUE, border='blue', lwd=3)
Now we can use ‘Smooth.ppp’ to interpolate. Population density at the points is referred to as the ‘marks’

```r
owin <- as.owin(win)
pp <- ppp(p[,1], p[,2], window=owin, marks=census$dens)
Warning: 1 point was rejected as lying outside the specified window
pp
```

Note the warning message: “1 point was rejected as lying outside the specified window”. That is odd, there is a polygon that has a centroid that is outside of the polygon. This can happen with, e.g., kidney shaped polygons.

Let’s find and remove this point that is outside the study area.

```r
sp <- SpatialPoints(p, proj4string=CRS(proj4string(win)))
library(rgeos)
i <- gIntersects(sp, win, byid=TRUE)
which(!i)
[1] 588
```

Let’s see where it is:
plot(census)
points(sp)
points(sp[!i,], col='red', cex=3, pch=20)

You can zoom in using the code below. After running the next line, click on your map twice to zoom to the red dot, otherwise you cannot continue:

zoom(census)

And add the red points again

points(sp[!i,], col='red')

To only use points that intersect with the window polygon, that is, where ‘i == TRUE’:

pp <- ppp(p[i,1], p[i,2], window=owin, marks=census$dens[i])
plot(pp)
plot(city, add=TRUE)
And to get a smooth interpolation of population density.

```r
s <- Smooth.ppp(pp)
Warning: Cross-validation criterion was minimised at right-hand end of
interval [89.7, 3350]; use arguments hmin, hmax to specify a wider interval
plot(s)
plot(city, add=TRUE)
```
Population density could establish the “population at risk” (to commit a crime) for certain crimes, but not for others. Maps with the city limits and the incidence of ‘auto-theft’, ‘drunk in public’, ‘DUI’, and ‘Arson’.

```r
par(mfrow=c(2,2), mai=c(0.25, 0.25, 0.25, 0.25))
for (offense in c("Auto Theft", "Drunk in Public", "DUI", "Arson")) {
 plot(city, col='grey')
 acrime <- crime[crime$CATEGORY == offense,]
 points(acrime, col = "red")
 title(offense)
}
```
Create a marked point pattern object (ppp) for all crimes. It is important to coerce the marks to a factor variable.

```r
crime$fcat <- as.factor(crime$CATEGORY)
w <- as.owin(city)
xy <- coordinates(crime)
mpp <- ppp(xy[,1], xy[,2], window = w, marks=crime$fcat)
Warning: 20 points were rejected as lying outside the specified window
Warning: data contain duplicated points

We can split the mpp object by category (crime)

```r
spp <- split(mpp)
plot(spp[1:4], main='')
```
The crime density by category:

![Arson, Assaulots, Auto Theft, Commercial Burglary](image)

```r
plot(density(spp[1:4]), main='')
```

And produce K-plots (with an envelope) for 'drunk in public' and 'Arson'. Can you explain what they mean?

```r
spatstat.options(checksegments = FALSE)
ktheft <- Kest(spp$"Auto Theft")
ketheft <- envelope(spp$"Auto Theft", Kest)
```

(continues on next page)
Spatial Data Analysis with R

Generating 99 simulations of CSR ...
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, ...
24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, ...
39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, ...
60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, ...
77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, ...
98, 99.
Done.

ktheft <- Kest(spp$"Arson")
ketheft <- envelope(spp$"Arson", Kest)
Generating 99 simulations of CSR ...
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, ...
24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, ...
39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, ...
60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, ...
77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, ...
98, 99.
Done.

par(mfrow=c(1,2))
plot(ktheft)
plot(ketheft)

Let's try to answer the question you have been wanting to answer all along. Is population density a good predictor of being (booked for) “drunk in public” and for “Arson”? One approach is to do a Kolmogorov-Smirnov (’kstest’) on ‘Drunk in Public’ and ‘Arson’, using population density as a covariate:

KS.arson <- cdf.test(spp$"Arson", ds)
KS.arson
Spatial Kolmogorov-Smirnov test of CSR in two dimensions
data: covariate 'ds' evaluated at points of 'spp$Arson'
and transformed to uniform distribution under CSR
D = 0.50706, p-value = 0.01142
alternative hypothesis: two-sided
KS.drunk <- cdf.test(spp$'Drunk in Public', ds)
KS.drunk
##
Spatial Kolmogorov-Smirnov test of CSR in two dimensions
##
data: covariate 'ds' evaluated at points of 'spp$"Drunk in Public"'
and transformed to uniform distribution under CSR
D = 0.54171, p-value < 2.2e-16
alternative hypothesis: two-sided

Question 7: Why is the result surprising, or not surprising?

We can also compare the patterns for “drunk in public” and for “Arson” with the KCross function.

```r
kc <- Kcross(mpp, i = "Drunk in Public", j = "Arson")
ekc <- envelope(mpp, Kcross, nsim = 50, i = "Drunk in Public", j = "Arson")
## Generating 50 simulations of CSR ... 
## 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, ...
## 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 
## 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50.
##
## plot(ekc)
```
Much more about point pattern analysis with spatstat is available here.